Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-12-06T03:00:25.492Z Has data issue: false hasContentIssue false

Helminth communities of four commercially important fish species from Chetumal Bay, Mexico

Published online by Cambridge University Press:  01 March 2007

M.L. Aguirre-Macedo*
Affiliation:
Laboratorio de Parasitología, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN Unidad Mérida), Antigua Carretera a Progreso Km 6, Apartado Postal 73, Cordemex, 97310 Mérida, Yucatán, México
V.M. Vidal-Martínez
Affiliation:
Laboratorio de Parasitología, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN Unidad Mérida), Antigua Carretera a Progreso Km 6, Apartado Postal 73, Cordemex, 97310 Mérida, Yucatán, México
D. González-Solís
Affiliation:
Colegio Frontera Sur, ECOSUR, Unidad Chetumal, Avenida Centenario Km 5-5, Apartado Postal 424, Chetumal, 77900 México
P.I. Caballero
Affiliation:
Centro de Estudios Tecnológicos del Mar no. 10 (CETMAR, Chetumal), Boulevard Bahía s/n, 77010 Chetumal, Quintana Roo, México
*
*Fax: (999) 981 23 34, E-mail: leo@mda.cinvestav.mx

Abstract

The relative importance of ecology and evolution as factors determining species richness and composition of the helminth communities of fish is a matter of current debate. Theoretical studies use host–parasite lists, but these do not include studies on a temporal or spatial scale. Local environmental conditions and host biological characteristics are shown to influence helminth species richness and composition in four fish species (Eugerres plumieri, Hexanematichthys assimilis, Oligoplites saurus, and Scomberomorus maculatus) in Chetumal Bay, Mexico. With the exception of H. assimilis, the helminth communities had not been previously studied and possible associations between environmental and host biological characteristics as factors determining helminth species richness and composition using redundancy analysis (RDA) are described. Thirty-four helminth species are identified, with the highest number of species (19 total (mean = 6.3 ± 2.1)) and the lowest (9 (4.0 ± 1.0)) occurring in H. assimilis and S. maculatus, respectively. The larval nematodes Contracaecum sp. and Pseudoterranova sp. were not only the helminth species shared by all four host species but also were the most prevalent and abundant. Statistical associations between helminth community parameters and local ecological variables such as host habitat use, feeding habits, mobility, and time of residence in coastal lagoons are identified. Phylogeny is important because it clearly separates all four host species by their specialist parasites, although specific habitat and feeding habits also significantly influence the differentiation between the four fish species.

Type
Research Papers
Copyright
Copyright © 2007 Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aho, J.M., Bush, A.O. & Wolfe, R.W. (1991) Helminth parasites of bowfin (Amia calva) from South Carolina. Journal of the Helminthological Society of Washington 58, 171175.Google Scholar
Blaber, S.J.M. (1997) Fish and fisheries of tropical estuaries. 367 pp. London, Chapman & Hall.Google Scholar
Bush, A.O., Lafferty, K.D., Lotz, J.M. & Shostak, A.W. (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology 83, 575583.CrossRefGoogle Scholar
Campos, A. & Carbonell, E. (1994) Parasite community diversity in two Mediterranean labrid fishes Symphodus tinca and Labrus merula. Journal of Fish Biology 44, 409–413.Google Scholar
Canché-Uuh, J.A. (2002) Bahía de Chetumal: receptor principal de aguas residuales. pp. 211–218 in Rosado-May, F.J., Romero-Mayo, R. & De Jesús-Navarrete, A. (Eds) Contribuciones de la ciencia al manejo costero integrado de la Bahía de Chetumal y su area de influencia. Serie Bahía de Chetumal No. 2, Chetumal, Q. Roo, México, Universidad de Quintana Roo.Google Scholar
Castro-Aguirre, J.L., Espinoza-Pérez, H.S. & Schmitter-Soto, J.J. (1999) Ictiofauna estuarino-lagunar y vicaria de México. 711 pp. México D.F., Limusa-IPN.Google Scholar
Coulatti, R.I., Ricciardi, A., Grigorovich, I.A. & MacIsaac, H.J. (2004) Is invasion success explained by the enemy release hypothesis? Ecology Letters 7, 721733.CrossRefGoogle Scholar
Deardoff, T.L. & Overstreet, R.M. (1981) Review of Hysterothylacium and Iheringascaris (both previously = Thynnascaris) (Nematoda: Anisakidae) from the northern Gulf of Mexico. Proceedings of the Biological Society of Washington 93, 10351079.Google Scholar
Esch, G.W. (1971) Impact of ecological succession on parasite fauna in centrarchids from oligotrophic and eutrophic ecosystems. American Midland Naturalist 86, 160.CrossRefGoogle Scholar
Esch, G.W. & Fernandez, J. (1993) A functional biology of parasitism. 333 pp. London, Chapman & Hall.CrossRefGoogle Scholar
Garrido-Olvera, L., García-Prieto, L. & Mendoza-Garfias, B. (2004) Helminth parasites of the Pacific fat sleeper Dormitator latifrons (Richardson, 1844) (Osteichthyes: Eleotridae) from Tres Palos Lagoon, Guerrero, Mexico. American Midland Naturalist 151, 165–169.CrossRefGoogle Scholar
Guegan, J.F. & Kennedy, C.R. (1993) Maximum local helminth parasite community richness in British fresh-water fish a test of the colonization time hypothesis. Parasitology 106, 91–100.CrossRefGoogle Scholar
Holmes, J.C. (1990) Helminth communities in marine fish. pp. 101–130 in Esch, G.W., Bush, A.O. & Aho, J.M. (Eds) Parasite communities: patterns and processes. London, Chapman & Hall.CrossRefGoogle Scholar
Holmes, J.C. & Price, P.W. (1986) Communities of parasites. pp. 187–213 in Anderson, D.J. & Kikkawa, J. (Eds) Community ecology: patterns and processes. Oxford, Blackwell Scientific Publications.Google Scholar
Jongman, R.H.G., Ter Braak, C.J.F. & van Tongeren, O.F.R. (1995) Data analysis in community and landscape ecology. 299 pp. Cambridge, Cambridge University Press.CrossRefGoogle Scholar
Kennedy, C.R. & Bush, A.O. (1994) The relationship between pattern and scale in parasite communities: a stranger in a strange land. Parasitology 109, 187196.CrossRefGoogle Scholar
Kennedy, C.R., DiCave, D., Berrilli, F. & Orecchia, P. (1997) Composition and structure of helminth communities in eels Anguilla anguilla from Italian coastal lagoons. Journal of Helminthology 71, 35–40.CrossRefGoogle ScholarPubMed
Lamothe-Argumedo, R., García-Prieto, L., Osorio-Sarabia, D. & Pérez-Ponce de León, G. (1997) Catálogo de la colección nacional de helmintos. 211 pp. México D.F. Instituto de Biología, Universidad Nacional Autónoma de México.Google Scholar
Legendre, P. & Gallagher, E.D. (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271280.CrossRefGoogle ScholarPubMed
Luque, J.L. & Oliva, M.E. (1999) Metazoan parasite infra-communities of Menticirrhus (Teleostei: Sciaenidae): an amphi-oceanic approximation. Journal of Parasitology 85, 379381.CrossRefGoogle Scholar
Luque, J.L. & Poulin, R. (2004) Use of fish as intermediate hosts by helminth parasites: a comparative analysis. Acta Parasitologica 49, 353361.Google Scholar
Madhavi, R. & Sai Ram, B.K. (2000) Community structure of helminth parasites of the tuna, Euthynnus affinis, from the Visakhapatnam coast, Bay of Bengal. Journal of Helminthology 74, 337342.CrossRefGoogle ScholarPubMed
Magurran, A.E. (1988) Ecological diversity and its measurements. 179 pp. London, Chapman & Hall.CrossRefGoogle Scholar
Marcogliese, D.J. (2001) Pursuing parasites up the food chain: implications of food web structure and function on parasite communities in aquatic systems. Acta Parasitologica 46, 8293.Google Scholar
Marcogliese, D.J. (2002) Food webs and the transmission of parasites to marine fish. Parasitology 124, S83–S99.CrossRefGoogle ScholarPubMed
Marcogliese, D.J. (2005) Parasites of the superorganism: are they indicators of ecosystem health? International Journal for Parasitology 35, 705716.CrossRefGoogle ScholarPubMed
McCune, B. & Grace, J.B. (2002) Analyses of ecological communities. 304 pp. Oregon, MjM Software.Google Scholar
Medina-Quej, A. & Domínguez-Viveros, M. (1997) Edad y crecimiento de S. maculatus (Scombriformes: Scombridae) en Quintana Roo, Mexico. Revista de Biología Tropical 43, 11551161.Google Scholar
Moravec, F. (1998) Nematodes of freshwater fishes of the Neotropical Region. 464 pp. Prague, Academia, Czech Republic.Google Scholar
Moravec, F., Vidal-Martínez, V.M., Vargas-Vázquez, J., Vivas-Rodríguez, C., González-Solís, D. & Mendoza-Franco, E. (1997) Helminth parasites of Epinephelus morio (Pisces: Serranidae) of the Yucatan Peninsula, southeastern Mexico. Folia Parasitologica 44, 255–266.Google ScholarPubMed
Nahhas, F.M. & Cable, R.M. (1964) Digenetic and aspidogastrid trematodes from marine fishes from Curaçao and Jamaica. Tulane Studies in Zoology 11, 169–226.CrossRefGoogle Scholar
Sánchez-Ramírez, C. & Vidal-Martínez, V.M. (2002) Metazoan parasite infracommunities of Florida pompano (Trachinotus carolinus) from the coast of the Yucatan Peninsula, Mexico. Journal of Parasitology 88, 10871094.CrossRefGoogle ScholarPubMed
Schmitter-Soto, J.J. (1998) Catálogo de los peces continentales de Quintana Roo. 239 pp. Mexico, Guías Científicas, ECOSUR.Google Scholar
Scholz, T. & Aguirre Macedo, M.L. (2000) Metacercariae of trematodes parasitizing freshwater fish in Mexico: a reappraisal. pp. 8599 in Salgado-Maldonado, G., García-Aldrete, L. & Vidal-Martínez, V.M. (Eds) Metazoan parasites in the Neotropics: ecological, systematic and evolutionary perspective. Commemorative Volume of the 70th Aniversary of the Instito de Biología, Universidad Nacional Autónoma de México. México D.F., UNAM.Google Scholar
Sokal, R.R. & Rohlf, F.J. (1995) Biometry. 2nd edn. 859 pp. San Francisco, W.H. Freeman and Company.Google Scholar
Takemoto, R.M., Pavanelli, G., Lizama, M.A.P., Luque, J.L. & Poulin, R. (2005) Host population density as the major determinant of endoparasite species richness in floodplain fishes of the upper Parana River, Brazil. Journal of Helminthology 79, 7584.CrossRefGoogle Scholar
ter Braak, C.J.F. & Smilauer, P. (1998) CANOCO reference manual and user's guide to CANOCO for Windows: software for Canonical Community Ordenation (version 4). 351 pp. New York, Microcomputer Power.Google Scholar
Timi, J.T. & Poulin, R. (2003) Parasite community structure within and cross host populations of a marine pelagic fish: how repeatable is it? International Journal for Parasitology 33, 13531362.CrossRefGoogle Scholar
Vidal-Martínez, V.M., Osorio-Sarabia, D. & Overstreet, R.M. (1994) Experimental infection of Contracaecum multipapillatum (Nematoda: Anisakinae) from Mexico in the domestic cat. Journal of Parasitology 80, 576579.CrossRefGoogle ScholarPubMed
Vidal-Martínez, V.M., Aguirre-Macedo, M.L., Vivas-Rodríguez, C. & Moravec, F. (1997) The macroparasite communities of the red grouper Epinephelus morio from Yucatan Peninsula, Mexico. Proceedings of the Annual Meeting of the Gulf and Caribbean Fisheries Institute 50, 764–779.Google Scholar
Vidal-Martínez, V.M., Aguirre-Macedo, M.L., Scholz, T., González-Solís, D. & Mendoza-Franco, E. (2001) Atlas of helminth parasites of cichlid fishes of Mexico. 166 pp. Prague, Academia.Google Scholar
Vidal-Martínez, V.M., Aguirre-Macedo, M.L., Noreña-Barroso, E., Gold-Bouchot, G. & Caballero-Pinzon, P.I. (2003) Potential interactions between metazoan parasites of the mayan cat fish Ariopsis assimilis and chemical pollution in Chetumal Bay, Mexico. Journal of Helminthology 77, 173–184.CrossRefGoogle Scholar