Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-28T11:31:56.672Z Has data issue: false hasContentIssue false

Ribosomal DNA analysis of isolates of the liver fluke Opisthorchis pedicellata (Verma, 1927) from two siluroid fish species in India

Published online by Cambridge University Press:  22 June 2016

K. Choudhary
Affiliation:
Department of Zoology, University of Lucknow, Lucknow, 226007, UP, India
N. Agrawal*
Affiliation:
Department of Zoology, University of Lucknow, Lucknow, 226007, UP, India

Abstract

The aim of this paper was to evaluate the genetic relationship between two isolates of Opisthorchis (O. pedicellata sp. 1, O. pedicellata sp. 2) from two siluroid fish hosts, based on three nuclear DNA (18S, internal transcribed spacer 1 (ITS1) and ITS2). Molecular analysis revealed that both isolates of 18S sequences showed low intraspecific variability (1.6%), while this was 1.9% for ITS1 and 2.6% for ITS2. The secondary structure of the ITS2 region exhibited a remarkable four-helix model, with helices 1 and 4 being relatively short, three U–U mismatches in helix 2 and the longest helix (3) having two UGGG motifs. The phylogenetic analyses, using neighbour–joining (NJ) and maximum parsimony (MP) methods of MEGA 6, demonstrate that both isolates form a sister clade with significant support (100%). Therefore, we concluded that both the isolates of O. pedicellata are of the same species but some variations may be due to the sympatric environment of variant hosts.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adlard, R.D., Barker, S.C., Blair, D. & Cribb, T.H. (1993) Comparison of the second internal transcribed spacer (ribosomal DNA) from population and species of Fasiolidae (Digenea). International Journal of Parasitology 23, 423425.Google Scholar
Al-Kandari, W.Y., Al-Bustan, S.A. & Alnaqeeb, M. (2011) Ribosomal DNA sequence characterization of Maritrema cf. eroliae Yamaguti, 1939 (Digenea: Microphallidae) and its life cycle. Journal of Parasitology 97, 10671074.Google Scholar
Bian, Q.Q., Zhao, G.H., Jia-Fang, Y.Q., Cheng, W.Y., Du, S.Z., Ma, X.T. & Lin, Q. (2013) Characterization of Dicrocoelium dendriticum isolates from small ruminants in Shaanxi Province, north-western China, using internal transcribed spacers of nuclear ribosomal DNA. Journal of Helminthology 26, 16.Google Scholar
Blair, D. & Barker, S.C. (1993) Affinities of the Gyliauchenidae: utility of 18S rRNA gene for phylogenetic inference in the Digenea (Platyhelminthes). International Journal of Parasitology 23, 527532.Google Scholar
Bowles, J., Blair, D. & McManus, D.P. (1995) A molecular phylogeny of the human schistosomes. Molecular Phylogenetics and Evolution 4, 103109.Google Scholar
Chen, C.A., Chang, C.C., Wei, N.V., Chen, C.H., Lein, Y.T., Lin, H.E., Dai, C.F. & Wallace, C.C. (2004) Secondary structure and phylogenetic utility of the ribosomal internal transcribed spacer 2 (ITS2) in scleractinian corals. Zoological Studies 43, 759771.Google Scholar
Chilton, N.B., Hoste, H., Newton, L.A., Beveridge, I. & Gasser, R.B. (2001) Evolutionary relationships of trichostrongyloid nematodes (Strongylid) inferred from ribosomal DNA sequence data. Molecular Phylogenetics and Evolution 19, 367386.CrossRefGoogle Scholar
Coleman, A.W. (2003) ITS2 is a double-edged tool for eukaryote evolutionary comparisons. Trends in Genetics 19, 370375.Google Scholar
Coleman, A.W. (2007) Pan-eukaryote ITS2 homologies revealed by RNA secondary structure. Nucleic Acids Research 35, 33223329.Google Scholar
Coleman, A.W. (2009) Is there a molecular key to the level of ‘biological species’ in eukaryotes? A DNA guide. Molecular Phylogenetics and Evolution 50, 197203.Google Scholar
Dίez, B., Pedrόs-Aliό, C. & Massana, R. (2001) Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing. Applied and Enviromental Microbiology 67, 29322941.Google Scholar
Ghatani, S., Shylla, J.A., Tandon, V., Chatterjee, A. & Roy, B. (2012) Molecular characterization of pouched amphistome parasites (Trematoda: Gastrothylacidae) using ribosomal ITS2 sequence and secondary structures. Journal of Helminthology 86, 117124.Google Scholar
Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment and analysis program for Windows 95/98/NT. Nucleic Acid Symposium Series 41, 9598.Google Scholar
Hillis, D.M. & Bull, J.J. (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology 42, 182192.CrossRefGoogle Scholar
Hillis, D.M. & Davis, S.K. (1986) Evolution of ribosomal DNA; fifty million years of recorded history in the frog genus Rana . Evolution 40, 12751288.Google Scholar
Hillis, D.M. & Dixon, M.T. (1991) Ribosomal DNA: molecular evolution and phylogenetic inference. Quarterly Review of Biology 66, 411453.CrossRefGoogle ScholarPubMed
Hongwei, M., Overstreet, R.M. & Subbotin, S.A. (2008) ITS2 secondary structure and phylogeny of cyst-forming nematodes of the genus Heterodera (Tylenchida: Heteroderidae). Organism Diversity Evolution 8, 182193.Google Scholar
Hwang, U.W., Ree, H.I. & Kim, W. (2000) Evolution of hypervariable regions, V4 and V7, of insect 18S rRNA and their phylogenetic implications. Zoological Science 17, 111121.Google Scholar
Itagaki, T., Tsumagari, N., Tsutaumi, K. & Chinone, S. (2003) Discrimination of three amphistome species by PCR-RFLP based on rDNA ITS-2. Journal of Veterinary Medical Science 65, 931933.CrossRefGoogle Scholar
Keller, A., Schleicher, T., Schultz, J., Müller, T., Dandekar, T. & Wolf, M. (2009) 5.8S–28S rRNA interaction and HMM-based ITS2 annotation. Gene 430, 5057.Google Scholar
Koetschan, C., Förster, F., Keller, A., Schleicher, T., Ruderisch, B., Schwarz, R., Müller, T., Wolf, M. & Schultz, J. (2010) The ITS2 database III – sequence and structures for phylogeny. Nucleic Acids Research 38, 275279.Google Scholar
Littlewood, D.T.J. (2008) Platyhelminth systematics and the emergence of new characters. Parasite 15, 333341.CrossRefGoogle ScholarPubMed
Lott, T.J., Burns, B.M., Zancope-Oliveira, R., Elie, C.M. & Reiss, E. (1998) Sequence analysis of internal transcribed spacer 2 (ITS2) from yeast species within the genus Candida . Current Microbiology 36, 6369.Google Scholar
McManus, D.P. & Bowles, J. (1996) Molecular genetics approaches to parasite identification: their value in diagnostic parasitology and systematics. International Journal of Parasitology 26, 687704.Google Scholar
Murell, A., Campbell, N.J.H. & Barker, S.C. (2001) Recurrent gains and losses of large (84–109 bp) repeats in the rDNA internal transcribed spacer 2 (ITS2) of rhipicephaline ticks. Insect Molecular Biology 10, 587596.Google Scholar
Nolan, M.J. & Cribb, T.H. (2005) The use and implication of ribosomal DNA sequencing for the discrimination of digenean species. Advances in Parasitology 60, 101163.Google Scholar
Olson, P.D. & Tkach, V.V. (2005) Advances and trends in the molecular systematics of the parasitic Platyhelminthes. Advances in Parasitology 60, 165243.CrossRefGoogle ScholarPubMed
Razo-Mendivil, U.J., Léon-Règagnon, V. & De-Léon, G.P.P. (2004) Description of two new species of Glypthelmins Stafford, 1905 (Digenea: Macroderoididae) in Rana spp. from Mexico, based on morphology and mtDNA and rDNA sequences. Systematic Parasitology 59, 199210.CrossRefGoogle ScholarPubMed
Razo-Mendivil, U., Vázquez-Domínguez, E., Rosas-Valdez, R., Pérez-Ponce de León, G. & Nadler, S.A. (2010) Phylogenetic analysis of nuclear and mitochondrial DNA reveals a complex of cryptic species in Crassicutis cichlasomae (Digenea: Apocreadiidae), a parasite of Middle-American cichlids. International Journal of Parasitology 40, 471486.CrossRefGoogle ScholarPubMed
Rinaldi, L., Perugini, A.G., Capuano, F., Fenizia, D., Musella, V., Veneziano, V. & Cringoli, G. (2005) Characterization of the second internal transcribed spacer of ribosomal DNA of Calicophoron daubneyi from various hosts and locations in southern Italy. Veterinary Parasitology 131, 247253.Google Scholar
Schultz, J., Maisel, S., Gerlach, D., Müeller, T. & Wolf, M. (2005) A common core of secondary structure of the internal transcribed spacer 2 (ITS2) throughout the Eukaryota. RNA 11, 361364.Google Scholar
Selig, C., Wolf, M., Müller, T., Dandekar, T. & Schultz, J. (2008) The ITS2 Database II: homology modelling RNA structure for molecular systematics. Nucleic Acids Research 36, 377380.Google Scholar
Shylla, J.A., Ghatani, S. & Tandon, V. (2013) Utility of divergent domains of 28S ribosomal RNA in species discrimination of paramphistomes (Trematoda: Digenea: Paramphistomoidea). Parasitology Research 112, 42394253.Google Scholar
Subbotin, S.A., Sturhan, D., Vovlas, N., Castillo, P., Tambe, J.T., Moens, M. & Baldwin, J.G. (2007) Application of the secondary structure model of rRNA for phylogeny: D2–D3 expansion segments of the LSU gene of plant–parasitic nematodes from the family Hoplolaimidae Filipjev, 1934. Molecular Phylogenetics and Evolution 43, 881890.Google Scholar
Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Phylogenetics and Evolution 30, 27252759 Google Scholar
Thompson, J.D., Higgins, D.G. & Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighing, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 46734680.CrossRefGoogle Scholar
Will, S., Reiche, K., Hofacker, I.L., Stadler, P.F. & Backofen, R. (2007) Inferring noncoding RNA families and classes by means of genome-scale structure-based clustering. PLoS Computational Biology 3, 65.Google Scholar
Xiao, J.Y., Gao, J.F., Cai, L.S., Dai, Y., Yang, C.J., Luo, L., Agatsuma, T. & Wang, C.R. (2013) Genetic variation among Clonorchis sinensis isolates from different hosts and geographical locations revealed by sequence analysis of mitochondrial and ribosomal DNA regions. Mitochondrial DNA 24, 559564.CrossRefGoogle ScholarPubMed
Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research 31, 34063415.CrossRefGoogle ScholarPubMed