Skip to main content Accessibility help
×
×
Home

On the conjectural Leibniz cohomology for groups

  • Simon Covez (a1)

Abstract

This article presents results which are consistent with conjectures about Leibniz (co)homology for discrete groups, due to J. L. Loday in 2003. We prove that rack cohomology has properties very close to the properties expected for the conjectural Leibniz cohomology. In particular, we prove the existence of a graded dendriform algebra structure on rack cohomology, and we construct a graded associative algebra morphism H(−) → HR(−) from group cohomology to rack cohomology which is injective for ● = 1.

Copyright

References

Hide All
1.Carter, J. S., Saito, M., Quandle homology theory and cocycle knot invariants, Topology and geometry of manifolds (Athens, GA, 2001), Proc. Sympos. Pure Math. 71, Amer. Math. Soc., Providence, RI, 2003, 249268.
2.Covez, S., The local integration of Leibniz algebras, ArXiv e-prints http://arxiv.org/abs/1011.4112.
3.Cuvier, C., Algèbres de Leibnitz: définitions, propriétés, Ann. Sci. École Norm. Sup. (4) 27(1), (1994), 145.
4.Etingof, P., Graña, M., On rack cohomology, J. Pure Appl. Algebra 177(1), (2003), 4959.
5.Feĭgin, B. L., Tsygan, B. L., Additive K-theory, K-theory, arithmetic and geometry (Moscow, 1984–1986), Lecture Notes in Math. 1289, Springer, Berlin, 1987, 67209.
6.Fenn, R., Rourke, C., Racks and links in codimension two, J. Knot Theory Ramifications 1(4), (1992), 343406.
7.Fenn, R., Rourke, C., Sanderson, B., Trunks and classifying spaces, Appl. Categ. Structures 3(4), (1995), 321356.
8.Kinyon, M. K., Leibniz algebras, Lie racks, and digroups, J. Lie Theory 17(1), (2007), 99114.
9.Loday, J.-L., Une version non commutative des algèbres de Lie: les algèbres de Leibniz, R.C.P. 25, Vol. 44 (French) (Strasbourg, 1992), Prépubl. Inst. Rech. Math. Av., 1993/41, Univ. Louis Pasteur, Strasbourg, 1993, 127151.
10.Loday, J.-L., Cup-product for Leibniz cohomology and dual Leibniz algebras, Math. Scand. 77(2), (1995), 189196.
11.Loday, J.-L., Overview on Leibniz algebras, dialgebras and their homology, Cyclic cohomology and noncommutative geometry (Waterloo, ON, 1995), Fields Inst. Commun. 17, Amer. Math. Soc., Providence, RI, 1997, 91102.
12.Loday, J.-L., Cyclic homology, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 301, Springer-Verlag, Berlin, 1998, appendix E by Ronco, María O., Chapter 13 by the author in collaboration with Teimuraz Pirashvili.
13.Loday, J.-L., Algebraic K-theory and the conjectural Leibniz K-theory, K-Theory 30(2), (2003), 105127, special issue in honor of Hyman Bass on his seventieth birthday. Part II.
14.Loday, J.-L., Some problems in operad theory, Operads and universal algebras (Tianjin, China, July 2010), Proc. Int. Conf. in Nankai Series in Pure, Applied Mathematics and Theoretical Physics 9, World Scientific, 2012, 139146.
15.Loday, J.-L., Frabetti, A., Chapoton, F., Goichot, F., Dialgebras and related operads, Lecture Notes in Mathematics 1763, Springer-Verlag, Berlin, 2001.
16.Loday, J.-L., Quillen, D., Cyclic homology and the Lie algebra homology of matrices, Comment. Math. Helv. 59(4), (1984), 569591.
17.Lane, S. Mac, Categories for the working mathematician, Graduate Texts in Mathematics 5, Springer-Verlag, New York, 1998.
18.Przytycki, J. H., Sikora, A. S., Distributive Products and Their Homology, ArXiv e-prints http://arxiv.org/abs/1105.3700.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of K-Theory
  • ISSN: 1865-2433
  • EISSN: 1865-5394
  • URL: /core/journals/journal-of-k-theory
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed