Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 5
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Rondinelli, James M. and Kioupakis, Emmanouil 2015. Predicting and Designing Optical Properties of Inorganic Materials. Annual Review of Materials Research, Vol. 45, Issue. 1, p. 491.


    Varley, Joel B and Schleife, André 2015. Bethe–Salpeter calculation of optical-absorption spectra of In2O3and Ga2O3. Semiconductor Science and Technology, Vol. 30, Issue. 2, p. 024010.


    Wang, Yaqin Tang, Wu Zhu, Junhao and Liu, Jie 2015. Strain induced change of band structure and electron effective mass in wurtzite ZnO: A first-principles study. Computational Materials Science, Vol. 99, p. 145.


    Pishtshev, A. Karazhanov, S. Zh and Klopov, M. 2014. Materials properties of magnesium and calcium hydroxides from first-principles calculations. Computational Materials Science, Vol. 95, p. 693.


    Rashid, Muhammad Hussain, Fayyaz Imran, Muhammad Abo, Gavin S. Ahmad, S.A. and Ping Feng, Yuan 2014. First-principles study of structural, electronic and optical properties of Zn1−xMgxO ternary alloys using modified Becke–Johnson potential. Materials Science in Semiconductor Processing, Vol. 18, p. 114.


    ×

Ab initio description of quasiparticle band structures and optical near-edge absorption of transparent conducting oxides

  • André Schleife (a1) and Friedhelm Bechstedt (a2)
  • DOI: http://dx.doi.org/10.1557/jmr.2012.147
  • Published online: 01 May 2012
Abstract
Abstract

Many-body perturbation theory is applied to compute the quasiparticle electronic structures and the optical absorption spectra (including excitonic effects) for several transparent conducting oxides (TCOs). We discuss HSE+G0W0 results (based on the hybrid exchange-correlation functional by Heyd, Scuseria, and Ernzerhof, and quasiparticle corrections from approximating the electronic self energy as the product of the Green’s function and the screened Coulomb interaction) for band structures, fundamental band gaps, and effective electron masses of magnesium oxide, zinc oxide, cadmium oxide, tin dioxide, tin oxide, indium (III) oxide and silicon dioxide. The Bethe–Salpeter equation (BSE) is solved to account for excitonic effects in the calculation of the frequency-dependent absorption coefficients. We show that the HSE+G0W0 approach and the solution of the BSE are very well suited to describe the electronic structure and the optical properties of various TCOs in good agreement with experiment.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: a.schleife@llnl.gov
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

3.A. Schleife , C. Rödl , J. Furthmüller , and F. Bechstedt : Electronic and optical properties of MgxZn1−xO and Cdx Zn1−xO from ab initio calculations. New J. Phys. 13(8), 085012 (2011).

4.A. Seko , A. Togo , F. Oba , and I. Tanaka : Structure and stability of a homologous series of tin oxides. Phys. Rev. Lett. 100, 045702 (2008).

5.S. Lany and A. Zunger : Dopability, intrinsic conductivity, and nonstoichiometry of transparent conducting oxides. Phys. Rev. Lett. 98, 045501 (2007).

6.B.E. Sernelius , K-F. Berggren , Z-C. Jin , I. Hamberg , and C.G. Granqvist : Band-gap tailoring of ZnO by means of heavy Al doping. Phys. Rev. B 37(17), 1024410248 (1988).

7.R.B.H. Tahar , T. Ban , Y. Ohya , and Y. Takahashi : Tin-doped indium oxide thin films: Electrical properties. J. Appl. Phys. 83(5), 26312645 (1998).

8.Z.Q. Li , Y.L. Yin , X.D. Liu , L.Y. Li , H. Liu , and Q.G. Song : Electronic structure and optical properties of Sb-doped SnO2. J. Appl. Phys. 106(8), 083701 (2009).

9.M.E. White , O. Bierwagen , M.Y. Tsai , and J.S. Speck : Electron transport properties of antimony-doped SnO2 single crystalline thin films grown by plasma-assisted molecular beam epitaxy. J. Appl. Phys. 106(9), 093704 (2009).

10.D.B. Buchholz , J. Liu , T.J. Marks , M. Zhang , and R.P.H. Chang : Control and characterization of the structural, electrical, and optical properties of amorphous zinc-indium-tin oxide thin films. ACS Appl. Mater. Interfaces 1(10), 21472153 (2009).

11.T. Minami : Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 20(4), S35 (2005).

12.J. Sun , A. Lu , L. Wang , Y. Hu , and Q. Wan : High-mobility transparent thin-film transistors with an Sb-doped SnO2 nanocrystal channel fabricated at room temperature. Nanotechnology 20(33), 335204 (2009).

13.O. Bierwagen and J.S. Speck : High electron mobility In2O3 (001) and (111) thin films with nondegenerate electron concentration. Appl. Phys. Lett. 97(7), 072103 (2010).

14.W.A. Badawy : Improvement of n-Si/SnO2 electrolyte photoelectrochemical cells by Ru deposits. J. Electroanal. Chem. 281(1–2), 8595 (1990).

15.R.R. Lunt and V. Bulovic : Transparent, near-infrared organic photovoltaic solar cells for window and energy-scavenging applications. Appl. Phys. Lett. 98(11), 113305 (2011).

16.A. Klein , C. Körber , A. Wachau , F. Säuberlich , Y. Gassenbauer , S.P. Harvey , D.E. Proffit , and T.O. Mason : Transparent conducting oxides for photovoltaics: Manipulation of Fermi level, work function and energy band alignment. Materials 3(11), 48924914 (2010).

17.J. Robertson : High dielectric constant gate oxides for metal oxide Si transistors. Rep. Prog. Phys. 69(2), 327 (2006).

18.K.R. Reyes-Gil , E.A. Reyes-García , and D. Raftery : Nitrogen-doped In2O3 thin film electrodes for photocatalytic water splitting. J. Phys. Chem. C 111(39), 1457914588 (2007).

19.T. Nagata , O. Bierwagen , M.E. White , M.Y. Tsai , Y. Yamashita , H. Yoshikawa , N. Ohashi , K. Kobayashi , T. Chikyow , and J.S. Speck : XPS study of Sb-/In-doping and surface pinning effects on the Fermi level in SnO2 (101) thin films. Appl. Phys. Lett. 98(23), 232107 (2011).

20.L.F.J. Piper , L. Colakerol , P.D.C. King , A. Schleife , J. Zúñiga-Pérez , P-A. Glans , T. Learmonth , A. Federov , T.D. Veal , F. Fuchs , V. Muñoz-Sanjosé , F. Bechstedt , C.F. McConville , and K.E. Smith : Observation of quantized subband states and evidence for surface electron accumulation in CdO from angle-resolved photoemission spectroscopy. Phys. Rev. B 78(16), 165127 (2008).

21.M.W. Allen , C.H. Swartz , T.H. Myers , T.D. Veal , C.F. McConville , and S.M. Durbin : Bulk transport measurements in ZnO: The effect of surface electron layers. Phys. Rev. B 81, 075211 (2010).

22.O. Bierwagen , J.S. Speck , T. Nagata , T. Chikyow , Y. Yamashita , H. Yoshikawa , and K. Kobayashi : Depletion of the In2O3 (001) and (111) surface electron accumulation by an oxygen plasma surface treatment. Appl. Phys. Lett. 98(17), 172101 (2011).

23.M.W. Allen , D.Y. Zemlyanov , G.I.N. Waterhouse , J.B. Metson , T.D. Veal , C.F. McConville , and S.M. Durbin : Polarity effects in the x-ray photoemission of ZnO and other wurtzite semiconductors. Appl. Phys. Lett. 98(10), 101906 (2011).

25.P. Ágoston and K. Albe : Thermodynamic stability, stoichiometry, and electronic structure of bcc-In2O3 surfaces. Phys. Rev. B 84, 045311 (2011).

26.X.Y. Kong and Z.L. Wang : Structures of indium oxide nanobelts. Solid State Commun. 128(1), 14 (2003).

27.Y. Li , Y. Bando , and D. Golberg : Single-crystalline In2O3 nanotubes filled with In. Adv. Mater. 15(7–8), 581585 (2003).

28.A. Beltrán , J. Andrés , E. Longo , and E.R. Leite : Thermodynamic argument about SnO2 nanoribbon growth. Appl. Phys. Lett. 83(4), 635637 (2003).

29.J.Y. Huang , L. Zhong , C.M. Wang , J.P. Sullivan , W. Xu , L.Q. Zhang , S.X. Mao , N.S. Hudak , X.H. Liu , A. Subramanian , H. Fan , L. Qi , A. Kushima , and J. Li : In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330(6010), 15151520 (2010).

30.V. Müller , M. Rasp , G. Štefanić , J. Ba , S. Günther , J. Rathousky , M. Niederberger , and D. Fattakhova-Rohlfing : Highly conducting nanosized monodispersed antimony-doped tin oxide particles synthesized via nonaqueous sol-gel procedure. Chem. Mater. 21(21), 52295236 (2009).

31.M.R. Wagner , J-H. Schulze , R. Kirste , M. Cobet , A. Hoffmann , C. Rauch , A.V. Rodina , B.K. Meyer , U. Röder , and K. Thonke : Γ7 valence band symmetry related hole fine splitting of bound excitons in ZnO observed in magneto-optical studies. Phys. Rev. B 80, 205203 (2009).

32.M.R. Wagner , G. Callsen , J.S. Reparaz , J-H. Schulze , R. Kirste , M. Cobet , I.A. Ostapenko , S. Rodt , C. Nenstiel , M. Kaiser , A. Hoffmann , A.V. Rodina , M.R. Phillips , S. Lautenschläger , S. Eisermann , and B.K. Meyer : Bound excitons in ZnO: Structural defect complexes versus shallow impurity centers. Phys. Rev. B 84, 035313 (2011).

33.F. Matino , L. Persano , V. Arima , D. Pisignano , R.I.R. Blyth , R. Cingolani , and R. Rinaldi : Electronic structure of indium-tin-oxide films fabricated by reactive electron-beam deposition. Phys. Rev. B 72, 085437 (2005).

34.C.Y. Wang , V. Cimalla , H. Romanus , T. Kups , G. Ecke , T. Stauden , M. Ali , V. Lebedev , J. Pezoldt , and O. Ambacher : Phase-selective growth and properties of rhombohedral and cubic indium oxide. Appl. Phys. Lett. 89(1), 011904 (2006).

35.W.R.L. Lambrecht , A.V. Rodina , S. Limpijumnong , B. Segall , and B.K. Meyer : Valence-band ordering and magneto-optic exciton fine structure in ZnO. Phys. Rev. B 65(7), 075207 (2002).

36.J. Robertson : Electronic structure of SnO2, GeO2, PbO2, TeO2 and MgF2. J. Phys. C: Solid State Phys. 12(22), 4767 (1979).

37.A. Svane and E. Antoncik : Electronic structure of rutile SnO2, GeO2 and TeO2. J. Phys. Chem. Solids 48(2), 171180 (1987).

38.K. Reimann and M. Steube : Experimental determination of the electronic band structure of SnO2. Solid State Commun. 105(10), 649652 (1998).

39.F. Fuchs , J. Furthmüller , F. Bechstedt , M. Shishkin , and G. Kresse : Quasiparticle band structure based on a generalized Kohn-Sham scheme. Phys. Rev. B 76(11), 115109 (2007).

40.F. Bechstedt , F. Fuchs , and G. Kresse : Ab initio theory of semiconductor band structures: New developments and progress. Phys. Status Solidi B 246(8), 18771892 (2009).

41.C. Rödl , F. Fuchs , J. Furthmüller , and F. Bechstedt : Ab initio theory of excitons and optical properties for spin-polarized systems: Application to antiferromagnetic MnO. Phys. Rev. B 77(18), 184408 (2008).

42.F. Bechstedt , F. Fuchs , and J. Furthmüller : Spectral properties of InN and its native oxide from first principles. Phys. Status Solidi A, 207(5), 10411053 (2010).

43.A. Schleife , C. Rödl , F. Fuchs , J. Furthmüller , and F. Bechstedt : Optical and energy-loss spectra of MgO, ZnO, and CdO from ab initio many-body calculations. Phys. Rev. B 80(3), 035112 (2009).

44.A. Schleife , J.B. Varley , F. Fuchs , C. Rödl , F. Bechstedt , P. Rinke , A. Janotti , and C.G. Van de Walle : Tin dioxide from first principles: Quasiparticle electronic states and optical properties. Phys. Rev. B 83(3), 035116 (2011).

47.Q. Yan , P. Rinke , M. Winkelnkemper , A. Qteish , D. Bimberg , M. Scheffler , and C.G. Van de Walle : Band parameters and strain effects in ZnO and group-III nitrides. Semicond. Sci. Technol. 26(1), 014037 (2011).

48.A. Schleife , M. Eisenacher , C. Rödl , F. Fuchs , J. Furthmüller , and F. Bechstedt : Ab initio description of heterostructural alloys: Thermodynamic and structural properties of MgxZn1−xO and CdxZn1−xO. Phys. Rev. B 81(24), 245210 (2010).

49.A. Schleife and F. Bechstedt : Real-structure effects: Absorption edge of MgxZn1−xO, CdxZn1−xO, and n-type ZnO from ab initio calculations. Proc. SPIE 8263(1), 826309 (2012).

50.P. Rinke , A. Schleife , E. Kioupakis , A. Janotti , C. Rödl , F. Bechstedt , M. Scheffler , and C.G. Van de Walle : First-principles optical spectra for F centers in MgO. Phys. Rev. Lett. 108, 126404 (2012).

51.J. Furthmüller , F. Hachenberg , A. Schleife , D. Rogers , F.H. Teherani , and F. Bechstedt : Clustering of N impurities in ZnO. Appl. Phys. Lett. 100(2), 022107 (2012).

52.A. Schleife , C. Rödl , F. Fuchs , K. Hannewald , and F. Bechstedt : Optical absorption in degenerately doped semiconductors: Mott transition or Mahan excitons? Phys. Rev. Lett. 107, 236405 (2011).

53.P. Ágoston , K. Albe , R.M. Nieminen , and M.J. Puska : Intrinsic n-type behavior in transparent conducting oxides: A comparative hybrid functional study of In2O3, SnO2, and ZnO. Phys. Rev. Lett. 103, 245501 (2009).

54.P. Ágoston , C. Körber , A. Klein , M.J. Puska , R.M. Nieminen , and K. Albe : Limits for n-type doping in In2O3 and SnO2: A theoretical approach by first-principles calculations using hybrid functional methodology. J. Appl. Phys. 108(5), 053511 (2010).

55.P. Hohenberg and W. Kohn : Inhomogeneous electron gas. Phys. Rev. 136(3B), B864B871 (1964).

56.W. Kohn and L.J. Sham : Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133A1138 (1965).

57.A. Schleife , F. Fuchs , J. Furthmüller , and F. Bechstedt : First-principles study of ground- and excited state properties of MgO, ZnO, and CdO polymorphs. Phys. Rev. B 73(24), 245212 (2006).

59.F. Fuchs and F. Bechstedt : Indium oxide polymorphs from first-principles: Quasiparticle electronic states. Phys. Rev. B 77(15), 155107 (2008).

61.B. Höffling , A. Schleife , C. Rödl , and F. Bechstedt . Band discontinuities at Si–TCO interfaces from quasiparticle calculations: Comparison of two alignment approaches. Phys. Rev. B 85, 035305 (2012).

62.M.S. Hybertsen and S.G. Louie : Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. Phys. Rev. B 34(8), 53905413 (1986).

63.J.P. Perdew and M. Levy : Physical content of the exact Kohn-Sham orbital energies: Band gaps and derivative discontinuities. Phys. Rev. Lett. 51, 18841887 (1983).

64.L.J. Sham and M. Schlüter : Density-functional theory of the energy gap. Phys. Rev. Lett. 51, 18881891 (1983).

65.L. Hedin : New method for calculating the one-particle Green’s function with application to the electron-gas problem. Phys. Rev. 139(3A), A796A823 (1965).

67.J. Heyd , G.E. Scuseria , and M. Ernzerhof : Erratum: “Hybrid functionals based on a screened coulomb potential” [J. Chem. Phys. 118, 8207 (2003)]. J. Chem. Phys., 124(21):219906, 2006.

68.J. Paier , M. Marsman , K. Hummer , G. Kresse , I.C. Gerber , and J.G. Ángyán : Screened hybrid density functionals applied to solids. J. Chem. Phys. 124(15), 154709 (2006).

69.J. Paier , M. Marsman , K. Hummer , G. Kresse , I.C. Gerber , and J.G. Ángyán : Erratum: “Screened hybrid density functionals applied to solids” [J. Chem. Phys. 124, 154709 (2006)].J. Chem. Phys., 125(24):249901, 2006.

70.A. Schleife , C. Rödl , F. Fuchs , J. Furthmüller , F. Bechstedt , P.H. Jefferson , T.D. Veal , C.F. McConville , L.F.J. Piper , A. DeMasi , K.E. Smith , H. Lösch , R. Goldhahn , C. Cobet , J. Zúñiga-Pérez , and V. Muñoz-Sanjosé : Ab initio studies of electronic and spectroscopic properties of MgO, ZnO, and CdO. J. Korean Phys. Soc. 53(5), 28112815 (2008).

71.A. Schleife , F. Fuchs , C. Rödl , J. Furthmüller , and F. Bechstedt : Band-structure and optical transition parameters of wurtzite MgO, ZnO, and CdO from quasiparticle calculations. Phys. Status Solidi B 246(9), 21502153 (2009).

72.D. Hobbs , G. Kresse , and J. Hafner : Fully unconstrained noncollinear magnetism within the projector augmented-wave method. Phys. Rev. B 62(17), 1155611570 (2000).

73.A. Schleife , C. Rödl , F. Fuchs , J. Furthmüller , and F. Bechstedt : Strain influence on valence-band ordering and excitons in ZnO: An ab initio study. Appl. Phys. Lett. 91(24), 241915 (2007).

74.V.I. Anisimov , J. Zaanen , and O.K. Andersen : Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44(3), 943954 (1991).

75.S.L. Dudarev , G.A. Botton , S.Y. Savrasov , C.J. Humphreys , and A.P. Sutton . Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 57(3), 15051509 (1998).

77.G. Kresse and J. Furthmüller : Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54(16), 1116911186 (1996).

78.G. Kresse and J. Furthmüller : Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6(1), 1550 (1996).

79.M. Shishkin and G. Kresse : Implementation and performance of the frequency-dependent GW method within the PAW framework. Phys. Rev. B 74(3), 035101, (2006).

80.P.E. Blöchl . Projector augmented-wave method. Phys. Rev. B 50(24), 1795317979 (1994).

81.G. Kresse and D. Joubert : From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59(3), 17581775 (1999).

82.G. Strinati : Application of the Green’s functions method to the study of the optical properties of semiconductors. Riv. Nuovo Cimento 11(12), 186 (1988).

83.G. Onida , L. Reining , and A. Rubio : Electronic excitations: Density functional versus many-body Green’s function approaches. Rev. Mod. Phys. 74(2), 601659 (2002).

84.C. Rödl , F. Fuchs , J. Furthmüller , and F. Bechstedt : Quasiparticle band structures of the antiferromagnetic transition-metal oxides MnO, FeO, CoO, and NiO. Phys. Rev. B 79(23), 235114 (2009).

85.M. Gajdoš , K. Hummer , G. Kresse , J. Furthmüller , and F. Bechstedt : Linear optical properties in the projector-augmented wave methodology. Phys. Rev. B 73(4), 045112 (2006).

86.S. Albrecht , L. Reining , R. Del Sole , and G. Onida : Ab initio calculation of excitonic effects in the optical spectra of semiconductors. Phys. Rev. Lett. 80(20), 45104513 (1998).

87.L.X. Benedict , E.L. Shirley , and R.B. Bohn : Optical absorption of insulators and the electron-hole interaction: An ab initio calculation. Phys. Rev. Lett. 80(20), 45144517 (1998).

88.M. Rohlfing and S.G. Louie : Electron-hole excitations in semiconductors and insulators. Phys. Rev. Lett. 81(11), 23122315 (1998).

89.F. Fuchs , C. Rödl , A. Schleife , and F. Bechstedt . Efficient O(N2) approach to solve the Bethe-Salpeter equation for excitonic bound states. Phys. Rev. B 78(8), 085103 (2008).

90.W.G. Schmidt , S. Glutsch , P.H. Hahn , and F. Bechstedt : Efficient O(N2) method to solve the Bethe-Salpeter equation. Phys. Rev. B 67(8), 085307 (2003).

91.R.de L. Kronig : On the theory of dispersion of x-rays. J. Opt. Soc. Am. 12(6), 547556 (1926).

93.W-J. Yin , S-H. Wei , M.M. Al-Jassim , and Y. Yan : Prediction of the chemical trends of oxygen vacancy levels in binary metal oxides. Appl. Phys. Lett. 99(14), 142109 (2011).

94.W. Martienssen and H. Warlimont : Springer Handbook of Condensed Matter and Materials Data (Springer, Berlin, 2005).

95.B. Gil , A. Lusson , V. Sallet , S-A. Said-Hassani , R. Triboulet , and P. Bigenwald : Strain-fields effects and reversal of the nature of the fundamental valence band of ZnO epilayers. Jpn. J. Appl. Phys., Part 2 40(10B), L1089L1092 (2001).

96.M. Oshikiri , Y. Imanaka , F. Aryasetiawan , and G. Kido : Comparison of the electron effective mass of the n-type ZnO in the wurtzite structure measured by cyclotron resonance and calculated from first-principle theory. Physica B 298(1–4), 472476 (2001).

97.Y. Dou , R.G. Egdell , D.S.L. Law , N.M. Harrison , and B.G. Searle : An experimental and theoretical investigation of the electronic structure of CdO. J. Phys. Condens. Matter 10(38), 84478458 (1998).

98.P.H. Jefferson , S.A. Hatfield , T.D. Veal , P.D.C. King , C.F. McConville , J. Zúñiga-Pérez , and V. Muñoz-Sanjosé : Band gap and effective mass of epitaxial cadmium oxide. Appl. Phys. Lett. 92(2), 022101 (2008).

99.D. Fröhlich , R. Kenklies , and R. Helbig : Band-gap assignment in SnO2 by two-photon spectroscopy. Phys. Rev. Lett. 41, 17501751 (1978).

100.K.J. Button , C.G. Fonstad , and W. Dreybrodt : Determination of the electron masses in stannic oxide by submillimeter cyclotron resonance. Phys. Rev. B 4, 45394542 (1971).

101.Y. Ogo , H. Hiramatsu , K. Nomura , H. Yanagi , T. Kamiya , M. Hirano , and H. Hosono : p-channel thin-film transistor using p-type oxide semiconductor, SnO. Appl. Phys. Lett. 93(3), 032113 (2008).

102.Z.M. Jarzebski : Preparation and physical properties of transparent conducting oxide films. Phys. Status Solidi A 71(1), 1341 (1982).

103.R.J. Powell and G.F. Derbenwick : Vacuum ultraviolet radiation effects in SiO2. IEEE Trans. Nucl. Sci. 18(6), 99105 (1971).

104.R.K. Chanana ; Determination of hole effective mass in SiO2 and SiC conduction band offset using Fowler-Nordheim tunneling characteristics across metal-oxide-semiconductor structures after applying oxide field corrections. J. Appl. Phys. 109(10), 104508 (2011).

105.P.D.C. King , T.D. Veal , A. Schleife , J. Zúñiga-Pérez , B. Martel , P.H. Jefferson , F. Fuchs , V. Muñoz-Sanjosé , F. Bechstedt , and C.F. McConville : Valence-band electronic structure of CdO, ZnO, and MgO from x-ray photoemission spectroscopy and quasiparticle-corrected density-functional theory calculations. Phys. Rev. B 79(20), 205205 (2009).

106.L.F.J. Piper , A. DeMasi , K.E. Smith , A. Schleife , F. Fuchs , F. Bechstedt , J. Zúñiga-Pérez , and V. Muñoz-Sanjosé : Electronic structure of single-crystal rocksalt CdO studied by soft x-ray spectroscopies and ab initio calculations. Phys. Rev. B 77(12), 125204 (2008).

107.A.R.H. Preston , B.J. Ruck , L.F.J. Piper , A. DeMasi , K.E. Smith , A. Schleife , F. Fuchs , F. Bechstedt , J. Chai , and S.M. Durbin : Band structure of ZnO from resonant x-ray emission spectroscopy. Phys. Rev. B 78(15), 155114 (2008).

108.A. Schleife , F. Fuchs , C. Rödl , J. Furthmüller , and F. Bechstedt : Branch-point energies and band discontinuities of III-nitrides and III-/II-oxides from quasiparticle band-structure calculations. Appl. Phys. Lett. 94(1), 012104 (2009).

109.B. Höffling , A. Schleife , F. Fuchs , C. Rödl , and F. Bechstedt : Band lineup between silicon and transparent conducting oxides. Appl. Phys. Lett. 97(3), 032116 (2010).

110.L.C. de Carvalho , A. Schleife , F. Fuchs , and F. Bechstedt : Valence-band splittings in cubic and hexagonal AlN, GaN, and InN. Appl. Phys. Lett. 97(23), 232101 (2010).

111.E. Kioupakis , P. Rinke , A. Schleife , F. Bechstedt , and C.G. Van de Walle : Free-carrier absorption in nitrides from first principles. Phys. Rev. B 81(24), 241201 (2010).

112.L.C. de Carvalho , A. Schleife , and F. Bechstedt : Influence of exchange and correlation on structural and electronic properties of AlN, GaN, and InN polytypes. Phys. Rev. B 84, 195105 (2011).

113.A. Belabbes , L.C. de Carvalho , A. Schleife , and F. Bechstedt : Cubic inclusions in hexagonal AlN, GaN, and InN: Electronic states. Phys. Rev. B 84, 125108 (2011).

114.L.C. de Carvalho , A. Schleife , J. Furthmüller , and F. Bechstedt : Distribution of cations in wurtzitic InxGa1−xN and InxAl1−xN alloys: Consequences for energetics and quasiparticle electronic structures. Phys. Rev. B 85, 115121 (2012).

115.M.L. Bortz , R.H. French , D.J. Jones , R.V. Kasowski , and F.S. Ohuchi : Temperature dependence of the electronic structure of oxides: MgO, MgAl2O4 and Al2O3. Phys. Scr. 41(4), 537541 (1990).

116.N-P. Wang , M. Rohlfing , P. Krüger , and J. Pollmann : Electronic excitations of CO adsorbed on MgO(001). Appl. Phys. A 78(2), 213221 (2004).

117.R. Laskowski and N.E. Christensen : Ab initio calculation of excitons in ZnO. Phys. Rev. B 73(4), 045201 (2006).

118.P. Gori , M. Rakel , C. Cobet , W. Richter , N. Esser , A. Hoffmann , R. Del Sole , A. Cricenti , and O. Pulci : Optical spectra of ZnO in the far ultraviolet: First-principles calculations and ellipsometric measurements. Phys. Rev. B 81, 125207 (2010).

119.A. Riefer , F. Fuchs , C. Rödl , A. Schleife , F. Bechstedt , and R. Goldhahn : Interplay of excitonic effects and van Hove singularities in optical spectra: CaO and AlN polymorphs. Phys. Rev. B 84, 075218 (2011).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: