Hostname: page-component-797576ffbb-tx785 Total loading time: 0 Render date: 2023-12-04T06:24:13.769Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Electrostatic force microscopy studies of boron-doped diamond films

Published online by Cambridge University Press:  31 January 2011

S. Gupta*
Affiliation:
Department of Electrical and Computer Engineering, University of Missouri, Columbia, Missouri 65211
O.A. Williams
Affiliation:
Institute for Materials Research, Universiteit Hasselt, BE-3590 Diepenbeek, Belgium
E. Bohannan
Affiliation:
Department of Chemistry, University of Missouri, Rolla, Missouri 65409
*
a)Address all correspondence to this author. e-mail: guptas@missouri.edu, sgup@rocketmail.com
Get access

Abstract

Much has been learned from electrochemical properties of boron-doped diamond (BDD) thin films synthesized using microwave plasma-assisted chemical vapor deposition about the factors influencing electrochemical activity, but some characteristics are still not entirely understood, such as its electrical conductivity in relation with microscale structure. Therefore, to effectively utilize these materials, understanding both the microscopic structure and physical (electrical, in particular) properties becomes indispensable. In addition to topography using atomic force microscopy, electrostatic force microscopy (EFM) in phase mode measuring the long-range electrostatic force gradients, helps to map the electrical conductivity heterogeneity of boron-doped micro-/nanocrystalline diamond surfaces. The mapping of electrical conductivity on boron doping and bias voltage is investigated. Experimental results showed that the BDD films’ surfaces were partially rougher with contrast of conductive regions (areas much less than 1 μm2 in diameter), which were uniformly distributed. Usually, the EFM signal is a convolution of topography and electrostatic force, and the phase contrast was increased with boron doping. At the highest boron doping level, the conductive regions exhibited quasi-metallic electrical properties. Moreover, the presence of a “positive–negative–positive” phase shift along the line section indicates the presence of “insulating–conducting–insulating” phases, although qualitative. Furthermore, the electrical properties, such as capacitance and dielectric constants at operating frequency, were quantitatively evaluated through modeling the bias-dependent phase measurements using simple and approximate geometries. It was found that decreasing grain size (or increasing the boron concentration) lowers the dielectric constant, which is attributed to the change in the crystal field caused by surface bond contraction of the nanosized crystallites. These findings are complemented and validated with scanning electron microscopy, x-ray diffraction, and “visible” Raman spectroscopy revealing their morphology, structure, and carbon-bonding configuration (sp3 versus sp2), respectively. These results are significant in the development of electrochemical nano-/microelectrodes and diamond-based electronics.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Garrido, J.A., Nebel, C.E., Stutzmann, M., Gheeraert, E., Casanova, N., Bustarret, E., Deneuville, A.: A new acceptor state in CVD-diamond Diamond Relat. Mater., 11, 347 2002Google Scholar
2Bachmann, P.K., Messier, R.: Diamond thin films Chem. Eng. News, 67, 24 1989Google Scholar
3Nazare, M.H.: Properties and Growth of Diamond edited by G. Davies EMIS Data Review Series LondonINSPEC 1994 85Google Scholar
4John, P.: The oxidation of (100) textured diamond. Diamond Relat. Mater. 11, 861 2002Google Scholar
5Fischer, A.E., Show, Y., Swain, G.M.: Electrochemical performance of diamond thin-film electrodes from different commercial sources. Anal. Chem. 76, 2553 2004Google Scholar
6Rodrigo, M.A., Michaud, P.A., Duo, I., Panizza, M., Cerisola, G., Cominellis, Ch.: Oxidation of 4-chlorophenol at boron-doped diamond electrode for wastewater treatment. J. Electrochem. Soc. 148, D60 2001Google Scholar
7Kohn, E., Gluche, P., Adamschik, M.: Diamond MEMS—a new emerging technology. Diamond Relat. Mater. 8, 934 1999Google Scholar
8Gupta, S., Weiss, B.L., Weiner, B.R., Pilione, L., Badzian, A., Morell, G.: Electron field emission properties of γ-irradiated microcrystalline diamond and nanocrystalline carbon thin films. J. Appl. Phys. 92, 3311 2002Google Scholar
9Sumant, A.V., Grierson, D.S., Gerbi, J.E., Birrell, J., Lanke, U.D., Auciello, O., Carlisle, J.A., Carpick, R.W.: Toward the ultimate tribological interface: Surface chemistry and nanotribology of ultrananocrystalline diamond. Adv. Mater. 17, 1039 2005Google Scholar
10Cui, J.B., Robertson, J., Milne, W.I.: The effect of film resistance on electron field emission from amorphous carbon films. Diamond Relat. Mater. 10, 868 2001Google Scholar
11Chen, K.H., Lai, Y.L., Chen, L.C., Wu, J.Y., Kao, F.J.: High-temperature Raman study in CVD diamond. Thin Solid Films 270, 143 1995Google Scholar
12Yarbrough, W.A., Messier, R.: Current issues and problems in the chemical vapor deposition of diamond. Science 247, 688 1990Google Scholar
13Kalish, R.: The search for donors in diamond. Diamond Relat. Mater. 10, 1749 2001Google Scholar
14Williams, A.W.S., Lightowlers, E.C., Collins, A.T.: Impurity conduction in synthetic semiconducting diamond. J. Phys. C: Solid State Phys. 3, 1727 1970Google Scholar
15Bustarret, E., Gheeraert, E., Watanabe, K.: Optical and electronic properties of heavily boron-doped homo-epitaxial diamond. Phys. Status Solidi 199, 9 2004Google Scholar
16Viswanathan, R., Heaney, M.B.: Direct imaging of the percolation network in a three-dimensional disordered conductor–insulator composite. Phys. Rev. Lett. 75, 4433 1995Google Scholar
17Holt, K.B., Bard, A.J., Show, Y., Swain, G.M.: Scanning electrochemical microscopy and conductive probe atomic force microscopy studies of hydrogen-terminated boron-doped diamond electrodes with different doping levels. J. Phys. Chem. B 108, 15117 2004Google Scholar
18Heo, J., Bockrath, M.: Local electronic structure of single-walled carbon nanotubes from electrostatic force microscopy. Nano Lett. 5, 853 2005Google Scholar
19Stali, C., Johnson, T. Jr., Pinto, N.J.: Quantitative analysis of scanning conductance microscopy. Nano Lett. 4, 859 2004Google Scholar
20Jeffery, S., Oral, A., Pethica, J.B.: Quantitative electrostatic force measurement in AFM. Appl. Surf. Sci. 157, 280 2000Google Scholar
21Bockrath, M., Markovic, N., Shepard, A., Tinkham, M., Gurevich, L., Kouwenhoven, L.P., Wu, M.W., Sohn, L.L.: Scanned conductance microscopy of carbon nanotubes and λ-DNA. Nano Lett. 2, 187 2002Google Scholar
22Enea, O., Riedo, B., Dietler, G.: AFM study of Pt clusters electrochemically deposited onto boron-doped diamond films. Nano Lett. 2, 241 2002Google Scholar
23Lei, C.H., Das, A., Elliott, M., MacDonald, J.E.: Quantitative electrostatic force microscopy-phase measurements. J. Nanotechnol. 15, 627 2004Google Scholar
24Sakaue, H., Yoshimura, N., Shingubara, S., Takahagi, T.: Low-dielectric constant porous diamond films formed by diamond nanoparticles. Appl. Phys. Lett. 83, 2226 2003Google Scholar
25Williams, O.A., Daenena, M., D’Haen, J., Haenen, K., Maes, J., Moshchalkov, V.V., Nesládek, M., Gruen, D.M.: Comparison of the growth and properties of ultrananocrystalline diamond and nanocrystalline diamond. Diamond Relat. Mater. 15, 230 2005Google Scholar
26Williams, O.A., Curat, S., Jackman, R.B., Gerbi, J.E., Gruen, D.M.: n-Type conductivity in ultrananocrystalline diamond films. Appl. Phys. Lett. 85, 1680 2004Google Scholar
27Gill, P.R., Murray, W., Wright, M.H.: Practical optimization, in The Levenberg–Marquardt Method Academic Press London 1981 Sec. 4.7.3, pp. 136–137.Google Scholar
28Gruen, D.M.: Nnaocrystalline diamond. Annu. Rev. Mater. Sci. 29, 211 1999Google Scholar
29Gupta, S., Weiner, B.R., Morell, G.: Synthesis and characterization of sulfur-incorporated microcrystalline diamond and nanocrystalline carbon thin films by hot filament chemical vapor deposition. J. Mater. Res. 18, 363 2003Google Scholar
30Cullity, B.D.: Elements of X-ray Diffraction, 2nd Ed. (Addison-Wesley, Reading, MA, 1978), pp. 102–111.Google Scholar
31Yoshikawa, M., Mori, Y., Obata, H., Maegawa, M., Katagiri, G., Ishida, H., Ishitani, A.: Raman scattering from nanometer-sized diamond. Appl. Phys. Lett. 67, 694 1995Google Scholar
32Prawer, S., Nemanich, R.J.: Raman spectroscopy of diamond and doped diamond. Philos. Trans. R. Soc. London, Ser. A 13, 2537 2004Google Scholar
33Fischer, A.E., Show, Y., Swain, G.M.: Electrochemical performance of diamond thin-film electrodes from different commercial sources. Anal. Chem. 76, 2553 2004Google Scholar
34Bennett, J.A., Wang, J., Show, Y., Swain, G.M.: Effect of sp 2-bonded nondiamond carbon impurity on the response of boron-doped polycrystalline diamond thin-film electrodes. J. Electrochem. Soc. 151, E306 2004Google Scholar
35Mermoux, M., Marcus, B., Swain, G.M., Butler, J.E.: A confocal Raman imaging study of an optically transparent boron-doped diamond electrode. J. Phys. Chem. B 106, 10816 2002Google Scholar
36Nemanich, R.J., Glass, J.T., Lucovsky, G., Shroder, R.E.: Raman scattering characterization of carbon bonding in diamond and diamondlike thin films. J. Vac. Sci. Technol., A 6, 1783 1988Google Scholar
37Knight, D.S., White, W.B.: Characterization of diamond films by Raman spectroscopy. J. Mater. Res. 4, 385 1989Google Scholar
38Bergman, L., Nemanich, R.J.: Raman and photoluminescence analysis of stress state and impurity distribution in diamond thin films. J. Appl. Phys. 78, 6709 1995Google Scholar
39Gonon, P., Gheeraert, E., Deneuville, A., Fontaine, F., Abello, L., Lucazeau, G.: Characterization of heavily B-doped polycrystalline diamond films using Raman spectroscopy and electron spin resonance. J. Appl. Phys. 78, 7059 1995Google Scholar
40Ager, J.W. III, Walukiewicz, W., McMluskey, M., Plano, M.A., Landstrass, M.I.: Fano interference of the Raman phonon in heavily boron-doped diamond films grown by chemical vapor deposition. Appl. Phys. Lett. 66, 616 1995Google Scholar
41Ushizawa, K., Watanabe, K., Ando, T., Sakaguchi, I., Nishitani-Gamo, M., Sato, Y., Kanda, H.: Boron concentration dependence of Raman spectra on {100} and {111} facets of B-doped CVD diamond. Diamond Relat. Mater. 7, 1719 1998Google Scholar
42Pruvost, P., Bustarret, E., Deneuville, A.: Characteristics of homoepitaxial heavily boron-doped diamond films from their Raman spectra. Diamond Relat. Mater. 9, 295 2000Google Scholar
43Pruvost, P., Deneuville, A.: Analysis of the Fano in diamond. Diamond Relat. Mater. 10, 531 2001Google Scholar
44Prawer, S., Nugent, K.W., Jamieson, D.N., Orwa, J.O., Bursill, L.A., Peng, J.L.: The Raman spectrum of nanocrystalline diamond. Chem. Phys. Lett. 332, 93 2000Google Scholar
45Ferrari, A.C., Robertson, J.: Origin of the 1150-cm−1 Raman mode in nanocrystalline diamond. Phys. Rev. B 63, 121405 2001Google Scholar
46Ferrari, A.C., Robertson, J.: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095 2000Google Scholar
47Kuzmany, H., Pfeiffer, R., Salk, N., Günther, B.: The mystery of the 1140 cm−1 Raman line in nanocrystalline diamond films. Carbon 42, 911 2004Google Scholar
48Gruen, D.M., Krauss, M.A., Zuiker, R., Csencsits, C.D., Terminello, R., Carlisle, J.A., Jimenez, I., Sutherland, D.G.J., Shu, D.K., Tong, W., Himpsel, F.: Characterization of nanocrystalline diamond films by core-level photoabsorption. Appl. Phys. Lett. 68, 1640 1996Google Scholar
49Bresse, J.F., Blayac, S.: Epitaxial layer sheet resistance outside and under ohmic contacts measurements using electrostatic force microscopy. Solid State Electron. 45, 1071 2001Google Scholar
50Bresse, J.F.: Contact potential difference of Au and GaInAs by electrostatic force microscopy. Mikrochim. Acta 132, 449 2000Google Scholar
51Angus, J.C., Hayman, C.C.: Low-pressure, metastable growth of diamond and “diamondlike” phases. Science 241, 913 1988Google Scholar
52Argoitia, A., Angus, J.C., Ma, J.S., Wang, L., Pirouz, P., Lambrecht, W.R.L.: Heteroepitaxy of diamond on c-BN: growth mechanisms and defect characterization. J. Mater. Res. 9, 1849 1994Google Scholar
53Landstrass, M.I., Ravi, K.V.: Hydrogen passivation of electrically active defects in diamond. Appl. Phys. Lett. 55, 1391 1989Google Scholar
54Kolber, T., Piplits, K., Haubner, R., Hutter, H.: Quantitative investigation of boron incorporation in polycrystalline CVD diamond films by SIMS. Fresenius J. Anal. Chem. 365, 636 1999Google Scholar
55Middleton, A.A., Wingreen, N.S.: Collective transport in arrays of small metallic dots. Phys. Rev. Lett. 71, 3198 1993Google Scholar
56Weisendanger, R.: Scanning Probe Microscopy and Spectroscopy: Methods and Applications Cambridge University Press Cambridge, England 1994Google Scholar
57Bonnell, D.A., Huey, B.L.: Scanning Probe Microscopy and Spectroscopy: Theory, Techniques and Applications 2nd ed.John Wiley & Sons New York 2001 pp. 8–42Google Scholar
58Kalinin, S.V., Bonnell, D.A.Scanning Probe Microscopy and Spectroscopy: Theory, Techniques and Applications 2nd ed.John Wiley & Sons New York 2001 pp. 205–251Google Scholar
59Ye, H., Yan, H., Jackman, R.B.: Dielectric properties of single crystal diamond. Semicond. Sci. Technol. 20, 296 2005Google Scholar
60Ye, H., Sun, C.Q., Hing, P.: Control of grain size and size effect on the dielectric constant of diamond films. J. Phys. D: Appl. Phys. 33, L148 2000Google Scholar