Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-28T17:08:01.378Z Has data issue: false hasContentIssue false

Fracture and R-curves in high volume fraction Al2O3/Al composites

Published online by Cambridge University Press:  31 January 2011

N. Nagendra
Affiliation:
Department of Metallurgy, Indian Institute of Science, Bangalore 560 012, India
V. Jayaram
Affiliation:
Department of Metallurgy, Indian Institute of Science, Bangalore 560 012, India
Get access

Abstract

Fracture toughness and fracture mechanisms in Al2O3/Al composites are described. The unique flexibility offered by pressureless infiltration of molten Al alloys into porous alumina preforms was utilized to investigate the effect of microstructural scale and matrix properties on the fracture toughness and the shape of the crack resistance curves (R-curves). The results indicate that the observed increment in toughness is due to crack bridging by intact matrix ligaments behind the crack tip. The deformation behavior of the matrix, which is shown to be dependent on the microstructural constraints, is the key parameter that influences both the steady-state toughness and the shape of the R-curves. Previously proposed models based on crack bridging by intact ductile particles in a ceramic matrix have been modified by the inclusion of an experimentally determined plastic constraint factor (P) that determines the deformation of the ductile phase and are shown to be adequate in predicting the toughness increment in the composites. Micromechanical models to predict the crack tip profile and the bridge lengths (L) correlate well with the observed behavior and indicate that the composites can be classified as (i) short-range toughened and (ii) long-range toughened on the basis of their microstructural characteristics.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Newkirk, M.S., Urquhart, A.W., and Zwicker, H.R., J. Mater. Res. 1, 81 (1986).CrossRefGoogle Scholar
2.Aghajanian, M.K., Macmillan, N.H., Kennedy, C.R., Luszcz, S.J., and Roy, R., J. Mater. Sci. 24, 658 (1989).Google Scholar
3.Antolin, S., Nagelberg, A.S., and Creber, D.K., J. Am. Ceram. Soc. 75, 447 (1992).CrossRefGoogle Scholar
4.Hanabe, M., Jayaram, V., and Bhaskaran, T.A., Acta Metall. Mater. 44, 819 (1996).Google Scholar
5.Dhandapani, S.P., Jayaram, V., and Surappa, M.K., Acta Metall. Mater. 42, 649 (1994).CrossRefGoogle Scholar
6.Fahrenholtz, W.G., Ewsuk, K.G., Loehman, R.E., and Tomsia, A.P., In-situ Reactions for Synthesis of Composites, Ceramics and Intermetallics (The Minerals, Metals and Materials Society, Warrendale, PA, 1995), p. 99.Google Scholar
7.Loehmann, R.E., Ewsuk, K., and Tomasia, A.J., J. Am. Ceram. Soc. 79, 27 (1996).Google Scholar
8.Breslin, M.C., Rignalda, J., Xu, L., Fuller, M., Seeger, J., Daehn, G.S., and Fraser, H.L., Mater. Sci. Eng. 195A, 113 (1995).Google Scholar
9.Balasubramanian, P.K., Rao, P.S., and Pai, B.C., Composites Sci. Technol. 39, 245 (1990).Google Scholar
10.Mortensen, A., Gungor, M.N., Cornie, J.A., and Flemings, M.C., J. Met. 38, 30 (1986).Google Scholar
11.Bao, G. and Zok, F., Acta Metall. Mater. 41, 3515 (1993).CrossRefGoogle Scholar
12.Erdogan, F. and Joseph, P.F., J. Am. Ceram. Soc. 72, 262 (1989).Google Scholar
13.Sigl, L.S., Mataga, P.A., Dalgleish, B.J., McMeeking, R.M., and Evans, A.G., Acta Metall. 36, 945 (1988).Google Scholar
14.Tattersall, H.G. and Tappin, G., J. Mater. Sci. 1, 296 (1966).Google Scholar
15.Bansal, G.K., Duckworth, W.H., and Niesz, D.E., J. Am. Ceram. Soc. 59, 472 (1976).CrossRefGoogle Scholar
16.Pabst, R.F., in Fracture Mechanics of Ceramics, edited by Bradt, R.C., Hasselman, D.P.H, and Lange, F.F. (Plenum Press, New York, 1974), Vol. 2, p. 555.Google Scholar
17.Mussler, B., Swain, M.V., and Claussen, N., J. Am. Ceram. Soc. 65, 566 (1982).CrossRefGoogle Scholar
18.Shannon, J.L. Jr, and Munz, D.G., in ASTM STP 855, edited by Underwood, J.H., Freiman, S.W., and Barrata, F.I. (American Society for Testing and Materials, Philadelphia, PA, 1984), p. 27.Google Scholar
19.Cook, R.F., Lawn, B.R., and Fairbanks, C.J., J. Am. Ceram. Soc. 68, 604 (1985).CrossRefGoogle Scholar
20.Zok, F.W. and Hom, C.L., Acta Metall. Mater. 38, 1895 (1990).Google Scholar
21.Rödel, J., Kelly, J.F., and Lawn, B.R., J. Am. Ceram. Soc. 73, 3313 (1990).CrossRefGoogle Scholar
22.Hoffman, M., Fiedler, B., Emmel, T., Prielipp, H., Claussen, N., Gross, D., and Rödel, J., Acta Mater. 45, 3609 (1997).Google Scholar
23.Thompson, L.R. and Raj, R., Acta Metall. Mater. 42, 2477 (1994).Google Scholar
24.Pickard, S.M., Manor, E., Ni, H., Evans, A.G., and Mehrabian, R., Acta Metall. Mater. 40, 177 (1992).CrossRefGoogle Scholar
25.Rödel, S.J., Sindel, M., Dransmann, M., Steinbrech, R.W., and Claussen, N., J. Eur. Ceram. Soc. 14, 153 (1994).Google Scholar
26.Flinn, B.D., Rühle, M., and Evans, A.G., Acta Metall. 37, 3001 (1989).CrossRefGoogle Scholar
27.Prielipp, H., Knechtel, M., Claussen, N., Streiffer, S.K., Müllejans, H., Rühle, M., and Rödel, J., Mater. Sci. Eng. 197A, 19 (1995).CrossRefGoogle Scholar
28.Ellerby, D.T., Flinn, B.D., Scott, W.D., Bordia, R.K., Ewsuk, K., Loehmann, R.E., and Fahrenholtz, W.G., in Proceedings of ICCM-10, edited by Poursartip, A. and Street, K. (Woodhead Publishing, Cambridge, United Kingdom, 1995), Vol. IV, p. 703.Google Scholar
29.Creber, D.K., Poste, S.D., Aghajanian, M.K., and Claar, T.D., Proc. Ceram. Eng. Sci. 9, 447 (1988).Google Scholar
30.Aghajanian, M.K., Burke, J.T., White, D.R., and Nagelberg, A.S., SAMPE Q. 20, 43 (1989).Google Scholar
31.Aghajanian, M.K., Rocazella, M.A., Burke, J.T., and Keck, S.D., J. Mater. Sci. 26, 447 (1991).CrossRefGoogle Scholar
32.Aghajanian, M.K., Langensiepen, R.A., Rocazella, M.A., Leighton, J.T., and Andersson, C.A., J. Mater. Sci. 28, 6683 (1993).Google Scholar
33.Breval, E., Aghajanian, M.K., Biel, J.P., and Antolin, S., J. Am. Ceram. Soc. 76, 1865 (1993).Google Scholar
34.Nagendra, N., Ph.D. Thesis, Indian Institute of Science (1997).Google Scholar
35.Nose, T. and Fujii, T., J. Am. Ceram. Soc. 71, 328 (1988).Google Scholar
36.Saxena, A. and Hudak, S.J. Jr, Int. J. Fract. 14, 5 (1978).Google Scholar
37.Johnson, K.L., J. Mech. Phys. Solids 18, 115 (1970).Google Scholar
38.Leggoe, J.W., Hu, X.Z., Swain, M.V., and Bush, M.B., Scr. Metall. Mater. 31, 577 (1994).CrossRefGoogle Scholar
39.Bao, G. and Hui, C.Y., Int. J. Solids Struct. 26, 631 (1990).Google Scholar
40.Flinn, B.D., Lo, C.S., Zok, F.W., and Evans, A.G., J. Am. Ceram. Soc. 76, 369 (1993).Google Scholar
41.Ashby, M.F., Blunt, F.J., and Bannister, M., Acta Metall. 37, 1047 (1989).Google Scholar
42.Déve, H.E., Odette, G.R., Mehrabian, R., Hecht, R.J., and Evans, A.G., Acta Metall. 38, 491 (1990).Google Scholar
43.Aghajanian, M.K., Andersson, C.A., Wiener, R.J., and Rossing, B.R., SAE Technical Paper Series, Paper No. 950263 (Society for Automotive Engineers, Warrendale, PA, 1995).Google Scholar
44.Irwin, G.R., Fracture, in Handbuch der Physics (Springer-Verlag, Berlin, Germany, 1958), Vol. 94, p. 551.Google Scholar
45.Kristic, V.D., Philos. Mag. A 48, 695 (1983).Google Scholar
46.Lloyd, D.J., Lagace, H.P., and McLeod, A.D., in Controlled Interphases in Composite Materials, edited by Ishida, H. (Elsevier Science, Amsterdam, The Netherlands, 1990), p. 359.Google Scholar
47.Shiang, J.K. and Ritchie, R.O., Metall. Trans. A 20A, 897 (1989).Google Scholar
48.Mataga, P.A., Acta Metall. 37, 3349 (1989).Google Scholar
49.Sigl, L.S. and Exner, H.E., Metall. Trans. A 18A, 1299 (1987).Google Scholar
50.Sun, X. and Yeomans, J.A., J. Am. Ceram. Soc. 79, 562 (1996).Google Scholar