Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-t4qhp Total loading time: 0.408 Render date: 2022-08-13T06:35:02.064Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Fracture and R-curves in high volume fraction Al2O3/Al composites

Published online by Cambridge University Press:  31 January 2011

N. Nagendra
Affiliation:
Department of Metallurgy, Indian Institute of Science, Bangalore 560 012, India
V. Jayaram
Affiliation:
Department of Metallurgy, Indian Institute of Science, Bangalore 560 012, India
Get access

Abstract

Fracture toughness and fracture mechanisms in Al2O3/Al composites are described. The unique flexibility offered by pressureless infiltration of molten Al alloys into porous alumina preforms was utilized to investigate the effect of microstructural scale and matrix properties on the fracture toughness and the shape of the crack resistance curves (R-curves). The results indicate that the observed increment in toughness is due to crack bridging by intact matrix ligaments behind the crack tip. The deformation behavior of the matrix, which is shown to be dependent on the microstructural constraints, is the key parameter that influences both the steady-state toughness and the shape of the R-curves. Previously proposed models based on crack bridging by intact ductile particles in a ceramic matrix have been modified by the inclusion of an experimentally determined plastic constraint factor (P) that determines the deformation of the ductile phase and are shown to be adequate in predicting the toughness increment in the composites. Micromechanical models to predict the crack tip profile and the bridge lengths (L) correlate well with the observed behavior and indicate that the composites can be classified as (i) short-range toughened and (ii) long-range toughened on the basis of their microstructural characteristics.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Newkirk, M.S., Urquhart, A.W., and Zwicker, H.R., J. Mater. Res. 1, 81 (1986).CrossRefGoogle Scholar
2.Aghajanian, M.K., Macmillan, N.H., Kennedy, C.R., Luszcz, S.J., and Roy, R., J. Mater. Sci. 24, 658 (1989).CrossRefGoogle Scholar
3.Antolin, S., Nagelberg, A.S., and Creber, D.K., J. Am. Ceram. Soc. 75, 447 (1992).CrossRefGoogle Scholar
4.Hanabe, M., Jayaram, V., and Bhaskaran, T.A., Acta Metall. Mater. 44, 819 (1996).CrossRefGoogle Scholar
5.Dhandapani, S.P., Jayaram, V., and Surappa, M.K., Acta Metall. Mater. 42, 649 (1994).CrossRefGoogle Scholar
6.Fahrenholtz, W.G., Ewsuk, K.G., Loehman, R.E., and Tomsia, A.P., In-situ Reactions for Synthesis of Composites, Ceramics and Intermetallics (The Minerals, Metals and Materials Society, Warrendale, PA, 1995), p. 99.Google Scholar
7.Loehmann, R.E., Ewsuk, K., and Tomasia, A.J., J. Am. Ceram. Soc. 79, 27 (1996).CrossRefGoogle Scholar
8.Breslin, M.C., Rignalda, J., Xu, L., Fuller, M., Seeger, J., Daehn, G.S., and Fraser, H.L., Mater. Sci. Eng. 195A, 113 (1995).CrossRefGoogle Scholar
9.Balasubramanian, P.K., Rao, P.S., and Pai, B.C., Composites Sci. Technol. 39, 245 (1990).CrossRefGoogle Scholar
10.Mortensen, A., Gungor, M.N., Cornie, J.A., and Flemings, M.C., J. Met. 38, 30 (1986).Google Scholar
11.Bao, G. and Zok, F., Acta Metall. Mater. 41, 3515 (1993).CrossRefGoogle Scholar
12.Erdogan, F. and Joseph, P.F., J. Am. Ceram. Soc. 72, 262 (1989).CrossRefGoogle Scholar
13.Sigl, L.S., Mataga, P.A., Dalgleish, B.J., McMeeking, R.M., and Evans, A.G., Acta Metall. 36, 945 (1988).CrossRefGoogle Scholar
14.Tattersall, H.G. and Tappin, G., J. Mater. Sci. 1, 296 (1966).CrossRefGoogle Scholar
15.Bansal, G.K., Duckworth, W.H., and Niesz, D.E., J. Am. Ceram. Soc. 59, 472 (1976).CrossRefGoogle Scholar
16.Pabst, R.F., in Fracture Mechanics of Ceramics, edited by Bradt, R.C., Hasselman, D.P.H, and Lange, F.F. (Plenum Press, New York, 1974), Vol. 2, p. 555.CrossRefGoogle Scholar
17.Mussler, B., Swain, M.V., and Claussen, N., J. Am. Ceram. Soc. 65, 566 (1982).CrossRefGoogle Scholar
18.Shannon, J.L. Jr, and Munz, D.G., in ASTM STP 855, edited by Underwood, J.H., Freiman, S.W., and Barrata, F.I. (American Society for Testing and Materials, Philadelphia, PA, 1984), p. 27.Google Scholar
19.Cook, R.F., Lawn, B.R., and Fairbanks, C.J., J. Am. Ceram. Soc. 68, 604 (1985).CrossRefGoogle Scholar
20.Zok, F.W. and Hom, C.L., Acta Metall. Mater. 38, 1895 (1990).CrossRefGoogle Scholar
21.Rödel, J., Kelly, J.F., and Lawn, B.R., J. Am. Ceram. Soc. 73, 3313 (1990).CrossRefGoogle Scholar
22.Hoffman, M., Fiedler, B., Emmel, T., Prielipp, H., Claussen, N., Gross, D., and Rödel, J., Acta Mater. 45, 3609 (1997).CrossRefGoogle Scholar
23.Thompson, L.R. and Raj, R., Acta Metall. Mater. 42, 2477 (1994).CrossRefGoogle Scholar
24.Pickard, S.M., Manor, E., Ni, H., Evans, A.G., and Mehrabian, R., Acta Metall. Mater. 40, 177 (1992).CrossRefGoogle Scholar
25.Rödel, S.J., Sindel, M., Dransmann, M., Steinbrech, R.W., and Claussen, N., J. Eur. Ceram. Soc. 14, 153 (1994).CrossRefGoogle Scholar
26.Flinn, B.D., Rühle, M., and Evans, A.G., Acta Metall. 37, 3001 (1989).CrossRefGoogle Scholar
27.Prielipp, H., Knechtel, M., Claussen, N., Streiffer, S.K., Müllejans, H., Rühle, M., and Rödel, J., Mater. Sci. Eng. 197A, 19 (1995).CrossRefGoogle Scholar
28.Ellerby, D.T., Flinn, B.D., Scott, W.D., Bordia, R.K., Ewsuk, K., Loehmann, R.E., and Fahrenholtz, W.G., in Proceedings of ICCM-10, edited by Poursartip, A. and Street, K. (Woodhead Publishing, Cambridge, United Kingdom, 1995), Vol. IV, p. 703.Google Scholar
29.Creber, D.K., Poste, S.D., Aghajanian, M.K., and Claar, T.D., Proc. Ceram. Eng. Sci. 9, 447 (1988).Google Scholar
30.Aghajanian, M.K., Burke, J.T., White, D.R., and Nagelberg, A.S., SAMPE Q. 20, 43 (1989).Google Scholar
31.Aghajanian, M.K., Rocazella, M.A., Burke, J.T., and Keck, S.D., J. Mater. Sci. 26, 447 (1991).CrossRefGoogle Scholar
32.Aghajanian, M.K., Langensiepen, R.A., Rocazella, M.A., Leighton, J.T., and Andersson, C.A., J. Mater. Sci. 28, 6683 (1993).CrossRefGoogle Scholar
33.Breval, E., Aghajanian, M.K., Biel, J.P., and Antolin, S., J. Am. Ceram. Soc. 76, 1865 (1993).CrossRefGoogle Scholar
34.Nagendra, N., Ph.D. Thesis, Indian Institute of Science (1997).Google Scholar
35.Nose, T. and Fujii, T., J. Am. Ceram. Soc. 71, 328 (1988).CrossRefGoogle Scholar
36.Saxena, A. and Hudak, S.J. Jr, Int. J. Fract. 14, 5 (1978).CrossRefGoogle Scholar
37.Johnson, K.L., J. Mech. Phys. Solids 18, 115 (1970).CrossRefGoogle Scholar
38.Leggoe, J.W., Hu, X.Z., Swain, M.V., and Bush, M.B., Scr. Metall. Mater. 31, 577 (1994).CrossRefGoogle Scholar
39.Bao, G. and Hui, C.Y., Int. J. Solids Struct. 26, 631 (1990).Google Scholar
40.Flinn, B.D., Lo, C.S., Zok, F.W., and Evans, A.G., J. Am. Ceram. Soc. 76, 369 (1993).CrossRefGoogle Scholar
41.Ashby, M.F., Blunt, F.J., and Bannister, M., Acta Metall. 37, 1047 (1989).Google Scholar
42.Déve, H.E., Odette, G.R., Mehrabian, R., Hecht, R.J., and Evans, A.G., Acta Metall. 38, 491 (1990).CrossRefGoogle Scholar
43.Aghajanian, M.K., Andersson, C.A., Wiener, R.J., and Rossing, B.R., SAE Technical Paper Series, Paper No. 950263 (Society for Automotive Engineers, Warrendale, PA, 1995).Google Scholar
44.Irwin, G.R., Fracture, in Handbuch der Physics (Springer-Verlag, Berlin, Germany, 1958), Vol. 94, p. 551.Google Scholar
45.Kristic, V.D., Philos. Mag. A 48, 695 (1983).CrossRefGoogle Scholar
46.Lloyd, D.J., Lagace, H.P., and McLeod, A.D., in Controlled Interphases in Composite Materials, edited by Ishida, H. (Elsevier Science, Amsterdam, The Netherlands, 1990), p. 359.CrossRefGoogle Scholar
47.Shiang, J.K. and Ritchie, R.O., Metall. Trans. A 20A, 897 (1989).CrossRefGoogle Scholar
48.Mataga, P.A., Acta Metall. 37, 3349 (1989).CrossRefGoogle Scholar
49.Sigl, L.S. and Exner, H.E., Metall. Trans. A 18A, 1299 (1987).CrossRefGoogle Scholar
50.Sun, X. and Yeomans, J.A., J. Am. Ceram. Soc. 79, 562 (1996).CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Fracture and R-curves in high volume fraction Al2O3/Al composites
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Fracture and R-curves in high volume fraction Al2O3/Al composites
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Fracture and R-curves in high volume fraction Al2O3/Al composites
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *