Skip to main content Accessibility help

Activation of PVDF membranes through facile hydroxylation of the polymeric dope

  • Samer Al-Gharabli (a1), Musthafa O. Mavukkandy (a2), Joanna Kujawa (a3), Suzana P. Nunes (a4) and Hassan A. Arafat (a2)...


A method comprising a two-step alkali/acid treatment of poly (vinylidene fluoride) (PVDF) polymer is developed for the fabrication of flat-sheet PVDF membranes functionalized with labile hydroxyl groups. This method involves the application of a short-duration modification in alkali medium (5% KOH). Extensive characterizations were performed on the prepared membranes. Modification of the polymer altered the crystallinity of the PVDF from a mixture of both α and β phases to a predominant β phase. Lower work of adhesion of the modified membrane indicated the formation of a more hydrophobic and wetting-resistant membrane surface. Centrifugation of the polymer dope after the modification had a pronounced impact on the properties of the resultant membranes. This protocol could be utilized in fine-tuning the properties of PVDF membranes for various target-specific applications such as membrane distillation. This method can also be used in functionalizing PVDF membranes further by exploiting the labile –OH group present on the membrane surface.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All

These authors contributed equally to this work.

Contributing Editor: Erik G. Herbert

This paper has been selected as an Invited Feature Paper.



Hide All
1. Liu, F., Hashim, N.A., Liu, Y., Abed, M.R.M., and Li, K.: Progress in the production and modification of PVDF membranes. J. Membr. Sci. 375(1–2), 1 (2011).
2. Gao, J., Yu, J., and Li, C.: Chemical modification of polyvinylidene fluoride (PVDF) membrane and its application to milk purification. Int. J. Nonlinear Sci. Numer. Simul. 11(1), 37 (2011).
3. Lalia, B.S., Guillen-Burrieza, E., Arafat, H.A., and Hashaikeh, R.: Fabrication and characterization of polyvinylidenefluoride-co-hexafluoropropylene (PVDF-HFP) electrospun membranes for direct contact membrane distillation. J. Membr. Sci. 428(Suppl. C), 104 (2013).
4. Sousa, R.E., Kundu, M., Gören, A., Silva, M.M., Liu, L., Costa, C.M., and Lanceros-Mendez, S.: Poly(vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE) lithium-ion battery separator membranes prepared by phase inversion. RSC Adv. 5(110), 90428 (2015).
5. Thomas, R., Guillen-Burrieza, E., and Arafat, H.A.: Pore structure control of PVDF membranes using a 2-stage coagulation bath phase inversion process for application in membrane distillation (MD). J. Membr. Sci. 452, 470 (2014).
6. Mavukkandy, M.O., Bilad, M.R., Kujawa, J., Al-Gharabli, S., and Arafat, H.A.: On the effect of fumed silica particles on the structure, properties and application of PVDF membranes. Sep. Purif. Technol. 187, 365 (2017).
7. Mavukkandy, M.O., Bilad, M.R., Giwa, A., Hasan, S.W., and Arafat, H.A.: Leaching of PVP from PVDF/PVP blend membranes: Impacts on membrane structure and fouling in membrane bioreactors. J. Mater. Sci. 51(9), 4328 (2016).
8. Hu, M-X., Li, J-N., Zhang, S-L., Li, L., and Xu, Z-K.: Hydrophilic modification of PVDF microfiltration membranes by adsorption of facial amphiphile cholic acid. Colloids Surf., B 123, 809 (2014).
9. Wang, J.K., Xiong, G.M., Luo, B., Choo, C.C., Yuan, S., Tan, N.S., and Choong, C.: Surface modification of PVDF using non-mammalian sources of collagen for enhancement of endothelial cell functionality. J. Mater. Sci.: Mater. Med. 27(3), 45 (2016).
10. Mika, A.: Chemical valves based on poly(4-vinylpyridine)-filled microporous membranes. J. Membr. Sci. 153(1), 45 (1999).
11. Lin, Y-F., Wang, C-S., Ko, C-C., Chen, C-H., Chang, K-S., Tung, K-L., and Lee, K-R.: Polyvinylidene fluoride/siloxane nanofibrous membranes for long-term continuous CO2-capture with large absorption-flux enhancement. ChemSusChem 7(2), 604 (2014).
12. Razmjou, A., Arifin, E., Dong, G., Mansouri, J., and Chen, V.: Superhydrophobic modification of TiO2 nanocomposite PVDF membranes for applications in membrane distillation. J. Membr. Sci. 415–416, 850 (2012).
13. Dong, H., Xiao, K., Li, X., Wang, Z., and Guo, S.: Preparation of PVDF/Al2O3 hybrid membrane via alkaline modification and chemical coupling process. Desalin. Water Treat. 51(19–21), 3800 (2013).
14. Ahmadi Feijani, E., Tavasoli, A., and Mahdavi, H.: Improving gas separation performance of poly(vinylidene fluoride) based mixed matrix membranes containing metal–organic frameworks by chemical modification. Ind. Eng. Chem. Res. 54(48), 12124 (2015).
15. Nishigochi, S., Ishigami, T., Maruyama, T., Hao, Y., Ohmukai, Y., Iwasaki, Y., and Matsuyama, H.: Improvement of antifouling properties of polyvinylidene fluoride hollow fiber membranes by simple dip coating of phosphorylcholine copolymer via hydrophobic interactions. Ind. Eng. Chem. Res. 53(6), 2491 (2014).
16. Mangindaan, D., Yared, I., Kurniawan, H., Sheu, J-R., and Wang, M-J.: Modulation of biocompatibility on poly(vinylidene fluoride) and polysulfone by oxygen plasma treatment and dopamine coating. J. Biomed. Mater. Res., Part A 100(11), 3177 (2012).
17. Brewis, D.M., Mathieson, I., Sutherland, I., Cayless, R.A., and Dahm, R.H.: Pretreatment of poly(vinyl fluoride) and poly(vinylidene fluoride) with potassium hydroxide. Int. J. Adhes. Adhes. 16(2), 87 (1996).
18. Efome, J.E., Baghbanzadeh, M., Rana, D., Matsuura, T., and Lan, C.Q.: Effects of superhydrophobic SiO2 nanoparticles on the performance of PVDF flat sheet membranes for vacuum membrane distillation. Desalination 373, 47 (2015).
19. Abdel-Hady, E.E., El-Toony, M.M., and Abdel-Hamed, M.O.: Grafting of glycidyl methacrylate/styrene onto polyvinyldine fluoride membranes for proton exchange fuel cell. Electrochim. Acta 103, 32 (2013).
20. Li, L., Deng, B., Ji, Y., Yu, Y., Xie, L., Li, J., and Lu, X.: A novel approach to prepare proton exchange membranes from fluoropolymer powder by pre-irradiation induced graft polymerization. J. Membr. Sci. 346(1), 113 (2010).
21. Liu, F., Zhu, B-K., and Xu, Y-Y.: Improving the hydrophilicity of poly(vinylidene fluoride) porous membranes by electron beam initiated surface grafting of AA/SSS binary monomers. Appl. Surf. Sci. 253(4), 2096 (2006).
22. Arslantas, A., Sinirlioglu, D., Eren, F., Muftuoglu, A.E., and Bozkurt, A.: An investigation of proton conductivity of PVDF based 5-aminotetrazole functional polymer electrolyte membranes (PEMs) prepared via direct surface-initiated AGET ATRP of glycidyl methacrylate (GMA). J. Polym. Res. 21(5), 437 (2014).
23. Meng, J-Q., Chen, C-L., Huang, L-P., Du, Q-Y., and Zhang, Y-F.: Surface modification of PVDF membrane via AGET ATRP directly from the membrane surface. Appl. Surf. Sci. 257(14), 6282 (2011).
24. Sun, W., Liu, J., Chu, H., and Dong, B.: Pretreatment and membrane hydrophilic modification to reduce membrane fouling. Membranes 3(3), 226 (2013).
25. Mathieson, I., Brewis, D.M., Sutherland, I., and Cayless, R.A.: Pretreatments of fluoropolymers. J. Adhes. 46(1–4), 49 (1994).
26. Kise, H. and Ogata, H.: Phase transfer catalysis in dehydrofluorination of poly(vinylidene fluoride) by aqueous sodium hydroxide solutions. J. Polym. Sci., Polym. Chem. Ed. 21(12), 3443 (1983).
27. Düputell, D. and Staude, E.: Heterogeneous modification of ultrafiltration membranes made from poly(vinylidene fluoride) and their characterization. J. Membr. Sci. 78(1), 45 (1993).
28. Dias, A.J. and McCarthy, T.J.: Dehydrofluorination of poly(vinylidene fluoride) in dimethylformamide solution: Synthesis of an operationally soluble semiconducting polymer. J. Polym. Sci., Polym. Chem. Ed. 23(4), 1057 (1985).
29. Dias, A.J. and McCarthy, T.J.: Synthesis of a two-dimensional array of organic functional groups: Surface-selective modification of poly(vinylidene fluoride). Macromolecules 17(12), 2529 (1984).
30. Awanis Hashim, N., Liu, Y., and Li, K.: Stability of PVDF hollow fibre membranes in sodium hydroxide aqueous solution. Chem. Eng. Sci. 66(8), 1565 (2011).
31. Rabuni, M.F., Nik Sulaiman, N.M., Aroua, M.K., and Hashim, N.A.: Effects of alkaline environments at mild conditions on the stability of PVDF membrane: An experimental study. Ind. Eng. Chem. Res. 52(45), 15874 (2013).
32. Ross, G.J., Watts, J.F., Hill, M.P., and Morrissey, P.: Surface modification of poly(vinylidene fluoride) by alkaline treatment1. The degradation mechanism. Polymer 41(5), 1685 (2000).
33. Ross, G., Watts, J., Hill, M., and Morrissey, P.: Surface modification of poly(vinylidene fluoride) by alkaline treatment part 2. Process modification by the use of phase transfer catalysts. Polymer 42(2), 403 (2001).
34. Nguyen-Tri, P., El Aidani, R., Leborgne, É., Pham, T., and Vu-Khanh, T.: Chemical ageingaging of a polyester nonwoven membrane used in aerosol and drainage filter. Polym. Degrad. Stab. 101, 71 (2014).
35. Owens, D.K. and Wendt, R.C.: Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 13(8), 1741 (1969).
36. Fox, H. and Zisman, W.: The spreading of liquids on low energy surfaces. I. Polytetrafluoroethylene. J. Colloid Sci. 5(6), 514 (1950).
37. Zisman, W.A.: Contact Angle Wettability Adhes (American Chemical Society, Washington, DC, 1964); pp. 151.
38. Soliveri, G., Pifferi, V., Annunziata, R., Rimoldi, L., Aina, V., Cerrato, G., Falciola, L., Cappelletti, G., and Meroni, D.: Alkylsilane–SiO2 hybrids. A concerted picture of temperature effects in vapor phase functionalization. J. Phys. Chem. C 119(27), 15390 (2015).
39. Chibowski, E.: Surface free energy of a solid from contact angle hysteresis. Adv. Colloid Interface Sci. 103(2), 149 (2003).
40. Chibowski, E., Jurak, M., Holysz, L., and Szczes, A.: Wetting properties of model biological membranes. Curr. Opin. Colloid Interface Sci. 19(4), 368 (2014).
41. Zhu, H., Guo, Z., and Liu, W.: Adhesion behaviors on superhydrophobic surfaces. Chem. Commun. 50(30), 3900 (2014).
42. Heydari, G., Thormann, E., Järn, M., Tyrode, E., and Claesson, P.M.: Hydrophobic surfaces: Topography effects on wetting by supercooled water and freezing delay. J. Phys. Chem. C 117(42), 21752 (2013).
43. Kujawa, J., Cerneaux, S., Koter, S., and Kujawski, W.: Highly efficient hydrophobic titania ceramic membranes for water desalination. ACS Appl. Mater. Interfaces 6(16), 14223 (2014).
44. Zheng, Z., Gu, Z., Huo, R., and Luo, Z.: Fabrication of self-cleaning poly(vinylidene fluoride) membrane with micro/nanoscaled two-tier roughness. J. Appl. Polym. Sci. 122(2), 1268 (2011).
45. Kujawa, J., Cerneaux, S., Kujawski, W., Bryjak, M., and Kujawski, J.: How to functionalize ceramics by perfluoroalkylsilanes for membrane separation process? Properties and application of hydrophobized ceramic membranes. ACS Appl. Mater. Interfaces 8(11), 7564 (2016).
46. Rana, D. and Matsuura, T.: Surface modifications for antifouling membranes. Chem. Rev. 110(4), 2448 (2010).
47. Ozkazanc, E. and Guney, H.Y.: The variation of the dielectric constant and loss index with temperature and draw ratio in α-PVDF. J. Appl. Polym. Sci. 112(4), 2482 (2009).
48. Liu, J., Lu, X., and Wu, C.: Effect of preparation methods on crystallization behavior and tensile strength of poly(vinylidene fluoride) membranes. Membranes 3(4), 389 (2013).
49. Shilton, S.J., Prokhorov, K.A., Gordeyev, S.A., Nikolaeva, G.Y., Dunkin, I.R., Smith, W.E., and Pashinin, P.P.: Raman spectroscopic evaluation of molecular orientation in polysulfone. Laser Phys. Lett. 1(7), 336 (2004).
50. Koenig, J.L.: Infrared and Raman Spectroscopy of Polymers (Smithers Rapra Publishing, Shrewsbury, United Kingdom, 2001).
51. Nasdala, L., Beran, A., Libowitzky, E., and Wolf, D.: The incorporation of hydroxyl groups and molecular water in natural zircon (ZrSiO4). Am. J. Sci. 301(10), 831 (2001).
52. Xiu, Y., Zhu, L., Hess, D.W., and Wong, C.P.: Relationship between work of adhesion and contact angle hysteresis on superhydrophobic surfaces. J. Phys. Chem. C 112(30), 11403 (2008).
53. Bertola, V.: Effect of polymer additives on the apparent dynamic contact angle of impacting drops. Colloids Surf., A 363(1–3), 135 (2010).
54. Kujawa, J., Rozicka, A., Cerneaux, S., and Kujawski, W.: The influence of surface modification on the physicochemical properties of ceramic membranes. Colloids Surf., A 443, 567 (2014).
55. Walsh, R.: Bond dissociation energy values in silicon-containing compounds and some of their implications. Acc. Chem. Res. 14(8), 246 (1981).
56. Bhushan, B., Cichomski, M., Hoque, E., DeRose, J.A., Hoffmann, P., and Mathieu, H.J.: Nanotribological characterization of perfluoroalkylphosphonate self-assembled monolayers deposited on aluminum-coated silicon substrates. Microsyst. Technol. 12(6), 588 (2006).
57. Kujawa, J. and Kujawski, W.: Functionalization of ceramic metal oxide powders and ceramic membranes by perfluoroalkylsilanes and alkylsilanes possessing different reactive groups: Physicochemical and tribological properties. ACS Appl. Mater. Interfaces 8(11), 7509 (2016).
58. Sui, Y., Wang, Z., and Gao, C.: A new synthetical process of PVDF derivatives via atom transfer radical graft polymerizations and its application in fabrication of antifouling and antibacterial PVDF ultrafiltration membranes. Desalin. Water Treat. 52(34–36), 6377 (2014).
59. Shen, Y. and Lua, A.C.: Preparation and characterization of mixed matrix membranes based on PVDF and three inorganic fillers (fumed nonporous silica, zeolite 4A and mesoporous MCM-41) for gas separation. Chem. Eng. J. 192, 201 (2012).


Activation of PVDF membranes through facile hydroxylation of the polymeric dope

  • Samer Al-Gharabli (a1), Musthafa O. Mavukkandy (a2), Joanna Kujawa (a3), Suzana P. Nunes (a4) and Hassan A. Arafat (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.