Skip to main content Accessibility help
×
Home

Aerosol jet fog (ajFOG) deposition of aluminum oxide phosphate thin films from an aqueous fog

  • Nishit M. Murari (a1), Ryan H. Mansergh (a2), Yu Huang (a2), Matthew G. Kast (a3), Douglas A. Keszler (a2) and John F. Conley (a1)...

Abstract

A new lab-based aerosol jet fog (ajFOG) deposition system with an atomizer consisting of two opposing jets located within the deposition chamber is introduced and its capabilities are examined. The unique opposing configuration of the atomizer enables the formation of a highly uniform fog even from low volatility precursors. Aluminum oxide phosphate (AlPO) thin films were deposited onto Si wafers at room temperature and sub-atmospheric pressure by using an aqueous precursor. Films were characterized by spectroscopic ellipsometry, x-ray diffraction and reflectivity, scanning electron microscopy, and metal/oxide/semiconductor (MOS) capacitor electrical measurements. Film thickness uniformity, density, surface roughness, and charge transport mechanisms were found to be comparable to spin-coated thin films deposited using the same precursor, demonstrating the effectiveness of this aerosol technique. A process model was developed to predict film thickness as a function of precursor concentration, exposure time, fog settling time, and number of exposures.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: jconley@eecs.oregonstate.edu

Footnotes

Hide All

Contributing Editor: Gary L. Messing

Footnotes

References

Hide All
1. Miikkulainen, V., Leskela, M., Ritala, M., and Puurunen, R.L.: Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trend. J. Appl. Phys. 113, 021301 (2013).
2. Niesen, T.P. and De Guire, M.R.: Review: Deposition of ceramic thin films at low temperatures from aqueous solution. Solid State Ionics 151, 61 (2002).
3. Kast, M.G., Enman, L.J., Gurnon, N.J., Nadarajah, A., and Boettcher, S.: Solution-deposited F: SnO2/TiO2 as a base-stable protective layer and antireflective coating for microtextured buried-junction H2-evolving Si photocathodes. ACS Appl. Mater. Interfaces 6, 22830 (2014).
4. Norrman, K., Siahkali, A.G., and Larsen, N.B: Studies of spin coated polymer films. Annu. Rep. Prog. Chem, Sect. C. 101, 174 (2005).
5. Singh, V.K., Sasaki, M., Song, J.H., and Hane, K.: Techniques for preparing defect-free spray coated resist films on three-dimension micro-electromechanical systems. Jpn. J. Appl. Phys. 44, 2016 (2005).
6. Golego, N., Studenikin, S.A., and Cocivera, M.: Properties of dielectric BaTiO3 thin films prepared by spray pyrolysis. Chem. Mater. 10, 2000 (1998).
7. Kawaharamura, T., Uchida, T., Sanada, M., and Furuta, M.: Growth and electrical properties of AlO x grown by mist chemical vapor deposition. AIP Adv. 3, 032135 (2013).
8. Huffman, M.: Liquid source misted chemical deposition (LSMCD)—A critical review. Integr. Ferroelectr. 10, 39 (1995).
9. Piao, J., Katori, S., Kawaharamura, T., Li, C., and Fujita, S.: Fabrication of silicon oxide thin films by mist chemical vapor deposition method from polysilazane and ozone as source. Jpn. J. Appl. Phys. 51, 090201 (2012).
10. Akaiwa, K. and Fujita, S.: Electrical conductive corundum-structured α-Ga2O3 thin films on sapphire with tin-doping grown by spray-assisted mist chemical vapor deposition. Jpn. J. Appl. Phys. 51, 070203 (2012).
11. Chung, H.J., Choi, J.H., Lee, J.Y., and Woo, S.I.: Preparation and electrical properties of (Ba,Sr)TiO3 thin films deposited by liquid source misted chemical deposition. Thin Solid Film 382, 106 (2001).
12. Rothon, R.N.: Solution-deposited metal phosphate coatings. Thin Solid Films 77, 149 (1981).
13. Meyers, S.T., Anderson, T.J., Hong, D., Hung, C.M., Wager, J.F., and Keszler, D.A.: Solution-processed aluminum oxide phosphatez thin-film dielectrics. Chem. Mater. 19, 4023 (2007).
14. Dobbelaere, T., Roy, A.K., Vereecken, P., and Detavernier, C.: Atomic layer deposition of aluminum phosphate based on the plasma polymerization of trimethyl phosphate. Chem. Mater. 26, 6863 (2014).
15. De Gennes, P.G.: Wetting: Statics and dynamics. Rev. Mod. Phys. 57, 827 (1985).
16. Tanner, L.H.: The spreading of silicone oil drops on horizontal surfaces. J. Phys. D.: Appl. Phys. 12, 1473 (1979).
17. Cormier, S.L., McGraw, J.D., Salez, T., Raphaël, E., and Dalnoki-Veress, K.: Beyond Tanner's law: Crossover between spreading regimes of a viscous droplet on an identical film. Phys. Rev. Lett. 109, 154501 (2012).
18. Bonn, D., Eggers, J., Indekeu, J., Meunier, J., and Rolley, E.: Wetting and spreading. Rev. Mod. Phys. 81, 739 (2009).
19. Rigaku. PDXL: Integrated X-ray Powder Diffraction Software (Rigaku Corporation, Tokyo, Japan, 2010).
20. Bruker: NanoScope Analysis (Bruker Corporation, Billerica, MA, 2013).
21. Schroeder, D.K.: Semiconductor Material, and Device Characterization, 3rd ed. (John Wiley & Sons, Hoboken, NJ, 2005); p. 328.
22. Alemayehu, M., Davis, J.E., Jackson, M., Lessig, B., Smith, L., Sumega, J.D., Knutson, C., Beekman, M., Johnson, D.C., and Keszler, D.A.: Tunable dielectric thin films by aqueous, inorganic solution-based processing. Solid State Sci. 13, 2037 (2011).
23. Jiang, K.. Meyers, S.T., Anderson, M.D., Johnson, D.C., and Keszler, D.A.: Functional ultrathin films and nanolaminates from aqueous solutions. Chem. Mater. 25, 210 (2013).
24. Smith, S.W., Wang, W., Keszler, D.A., and Conley, J.F. Jr.: Solution based prompt inorganic condensation and atomic layer deposition of Al2O3 films: A side-by-side comparison. J. Vac. Sci. Technol., A 32, 041501 (2014).
25. Anderson, J.T., Wang, W., Jiang, K., Gustafsson, T., Xu, C., Gafunkel, E.L., and Keszler, D.A.: Chemically amplified dehydration of thin oxide films. ACS Sustainable Chem. Eng. 3, 1081 (2015).
26. Wang, W.: Ph.D. Dissertation, “Synthesis and characterizations of Aluminum Oxide Based Materials – from Molecules to Devices,” Oregon State University, Corvallis, 2013.
27. Frenkel, J.: On pre-breakdown phenomena in insulators and electronic semi-conductors. Phys. Rev. 54, 647 (1938).
28. Jeong, D.S., Park, H.B., and Hwang, C.S.: Reasons for obtaining an optical dielectric constant from the Poole–Frenkel conduction behavior of atomic-layer-deposited HfO2 films. Appl. Phys. Lett. 86, 072903 (2005).
29. Alimardani, N., King, S.W., French, B.L., Tan, C., Lampert, B.P., and Conley, J.F. Jr.: Investigation of the impact of insulator material on the performance of dissimilar electrode metal-insulator-metal diodes. J. Appl. Phys. 116, 024508 (2014).

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Murari supplementary material
Murari supplementary material 1

 Unknown (1.1 MB)
1.1 MB
UNKNOWN
Supplementary materials

Murari supplementary material
Murari supplementary material 2

 Unknown (163 KB)
163 KB
UNKNOWN
Supplementary materials

Murari supplementary material
Murari supplementary material 3

 Unknown (158 KB)
158 KB
UNKNOWN
Supplementary materials

Murari supplementary material
Murari supplementary material 4

 Unknown (118 KB)
118 KB
UNKNOWN
Supplementary materials

Murari supplementary material
Murari supplementary material 5

 Unknown (61 KB)
61 KB
VIDEO
Supplementary materials

Murari supplementary material
Murari supplementary material 6

 Video (64.6 MB)
64.6 MB

Aerosol jet fog (ajFOG) deposition of aluminum oxide phosphate thin films from an aqueous fog

  • Nishit M. Murari (a1), Ryan H. Mansergh (a2), Yu Huang (a2), Matthew G. Kast (a3), Douglas A. Keszler (a2) and John F. Conley (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed