Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 11
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Schneider, Dirk Gomopoulos, Nikolaos Koh, Cheong Y. Papadopoulos, Periklis Kremer, Friedrich Thomas, Edwin L. and Fytas, George 2016. Nonlinear control of high-frequency phonons in spider silk. Nature Materials,


    Ding, Dawei Guerette, Paul A. Hoon, Shawn Kong, Kiat Whye Cornvik, Tobias Nilsson, Martina Kumar, Akshita Lescar, Julien and Miserez, Ali 2014. Biomimetic Production of Silk-Like Recombinant Squid Sucker Ring Teeth Proteins. Biomacromolecules, Vol. 15, Issue. 9, p. 3278.


    Shi, Yanfang Li, Xiaohui Ding, Guangzhu Wu, Yangjiang Weng, Yuyan and Hu, Zhijun 2014. Control of β-Sheet Crystal Orientation and Elastic Modulus in Silk Protein by Nanoconfinement. Macromolecules, Vol. 47, Issue. 22, p. 7987.


    Bai, S. Liu, S. Zhang, C. Xu, W. Lu, Q. Han, H. Kaplan, D.L and Zhu, H. 2013. Controllable transition of silk fibroin nanostructures: An insight into in vitro silk self-assembly process. Acta Biomaterialia, Vol. 9, Issue. 8, p. 7806.


    Teniswood, C. M. H. Roberts, D. Howard, W. R. and Bradby, J. E. 2013. A quantitative assessment of the mechanical strength of the polar pteropod Limacina helicina antarctica shell. ICES Journal of Marine Science, Vol. 70, Issue. 7, p. 1499.


    Cronin-Golomb, Mark Murphy, Amanda R. Mondia, Jessica P. Kaplan, David L. and Omenetto, Fiorenzo G. 2012. Optically induced birefringence and holography in silk. Journal of Polymer Science Part B: Polymer Physics, Vol. 50, Issue. 4, p. 257.


    McAllister, Quinn P. Gillespie, John W. and VanLandingham, Mark R. 2012. Evaluation of the three-dimensional properties of Kevlar across length scales. Journal of Materials Research, Vol. 27, Issue. 14, p. 1824.


    Zhang, K. Si, F.W. Duan, H.L. and Wang, J. 2010. Microstructures and mechanical properties of silks of silkworm and honeybee. Acta Biomaterialia, Vol. 6, Issue. 6, p. 2165.


    Porter, David and Vollrath, Fritz 2009. Silk as a Biomimetic Ideal for Structural Polymers. Advanced Materials, Vol. 21, Issue. 4, p. 487.


    Vollrath, Fritz and Porter, David 2009. Silks as ancient models for modern polymers. Polymer, Vol. 50, Issue. 24, p. 5623.


    Jiang, C. Wang, X. Gunawidjaja, R. Lin, Y.-H. Gupta, M. K. Kaplan, D. L. Naik, R. R. and Tsukruk, V. V. 2007. Mechanical Properties of Robust Ultrathin Silk Fibroin Films. Advanced Functional Materials, Vol. 17, Issue. 13, p. 2229.


    ×

Anisotropic nanomechanical properties of Nephila clavipes dragline silk

  • Donna M. Ebenstein (a1) and Kathryn J. Wahl (a1)
  • DOI: http://dx.doi.org/10.1557/jmr.2006.0246
  • Published online: 01 August 2006
Abstract

Spider silk is a material with unique mechanical properties under tension. In this study, we explore the anisotropic mechanical properties of spider silk using instrumented indentation. Both quasistatic indentation and dynamic stiffness imaging techniques were used to measure the mechanical properties in transverse and longitudinal sections of silk fibers. Quasistatic indentation yielded moduli of 10 ± 2 GPa in transverse sections and moduli of 6.4 ± 0.5 GPa in longitudinal sections, demonstrating mechanical anisotropy in the fiber. This result was supported by dynamic stiffness imaging, which also showed the average reduced modulus measured in the transverse section to be slightly higher than that of the longitudinal section. Stiffness imaging further revealed an oriented microstructure in the fiber, showing microfibrils aligned with the drawing axis of the fiber. No spatial distribution of modulus across the silk sections was observed by either quasistatic or stiffness imaging mechanics.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: kathryn.wahl@nrl.navy.mil
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1.J.M. Gosline , M.E. Demont , M.W. Denny : The structure and properties of spider silk. Endeavour 10, 37 (1986).

2.M.B. Hinman , J.A. Jones , R.V. Lewis : Synthetic spider silk: A modular fiber. Trends Biotechnol. 18, 374 (2000).

3.F. Vollrath , D.P. Knight : Liquid crystalline spinning of spider silk. Nature 410, 541 (2001).

4.R.V. Lewis : Spider silk–The unraveling of a mystery. Acc. Chem. Res. 25, 392 (1992).

5.E. Bini , D.P. Knight , D.L. Kaplan : Mapping domain structures in silks from insects and spiders related to protein assembly. J. Mol. Biol. 335, 27 (2004).

7.D.T. Grubb , L.W. Jelinski : Fiber morphology of spider silk: The effects of tensile deformation. Macromolecules 30, 2860 (1997).

8.K. Augsten , P. Mühlig , C. Herrmann : Glycoproteins and skin-core structure in Nephila clavipes spider silk observed by light and electron microscopy. Scanning 22, 12 (2000).

9.P. Poza , J. Perez-Rigueiro , M. Elices , J. Llorca : Fractographic analysis of silkworm and spider silk. Eng. Fract. Mech. 69, 1035 (2002).

10.J. Perez-Rigueiro , M. Elices , J. Llorca , C. Viney : Tensile properties of Argiope trifasciata drag line silk obtained from the spider's web. J. Appl. Polym. Sci. 82, 2245 (2001).

11.S. Frische , A.B. Maunsbach , F. Vollrath : Elongate cavities and skin-core structure in Nephila spider silk observed by electron microscopy. J. Microscopy—Oxford. 189, 64 (1998).

12.T.A. Blackledge , J.E. Swindeman , C.Y. Hayashi : Quasistatic and continuous dynamic characterization of the mechanical properties of silk from the cobweb of the black widow spider Latrodectus hesperus. J. Exp. Biol. 208, 1937 (2005).

13.G.H. Altman , F. Diaz , C. Jakuba , T. Calabro , R.L. Horan , J.S. Chen , H. Lu , J. Richmond , D.L. Kaplan : Silk-based biomaterials. Biomaterials 24, 401 (2003).

15.F. Vollrath , B. Madsen , Z.Z. Shao : The effect of spinning conditions on the mechanics of a spider's dragline silk. Proc. R. Soc. London, B: Biol. Sci. 268, 2339 (2001).

16.L.D. Miller , S. Putthanarat , R.K. Eby , W.W. Adams : Investigation of the nanofibrillar morphology in silk fibers by small angle x-ray scattering and atomic force microscopy. Int. J. Biol. Macromol. 24, 159 (1999).

17.S.F.Y. Li , A.J. McGhie , S.L. Tang : New internal structure of spider dragline silk revealed by atomic-force microscopy. Biophys. J. 66, 1209 (1994).

18.P.M. Cunniff , S.A. Fossey , M.A. Auerbach , J.W. Song , D.L. Kaplan , W.W. Adams , R.K. Eby , D.V. Mahoney , D.L. Vezie : Mechanical and thermal properties of dragline silk from the spider Nephila clavipes. Polym. Adv. Technol. 5, 401 (1994).

19.Y. Yang , X. Chen , Z.Z. Shao , P. Zhou , D. Porter , D.P. Knight , F. Vollrath : Toughness of spider silk at high and low temperatures. Adv. Mater. 17, 84 (2005).

21.S.A.S. Asif , K.J. Wahl , R.J. Colton , O.L. Warren : Quantitative imaging of nanoscale mechanical properties using hybrid nanoindentation and force modulation. J. Appl. Phys. 90, 1192 (2001).

23.Y.L. Wang , C.Y. Yue , K.C. Tam , X. Hue : Relationship between processing, microstructure, and mechanical properties of injection molded thermotropic LCP. J. Appl. Polym. Sci. 88, 1713 (2003).

24.M. Bonner , L.S. Saunders , I.M. Ward , G.W. Davies , M. Wang , K.E. Tanner , W. Bonfield : Anisotropic mechanical properties of oriented HAPEX (TM). J. Mater. Sci. 37, 325 (2002).

25.R.K. Roeder , M.M. Sproul , C.H. Turner : Hydroxyapatite whiskers provide improved mechanical properties in reinforced polymer composites. J. Biomed. Mater. Res. A 67A, 801 (2003).

26.J.G. Swadener , J.Y. Rho , G.M. Pharr : Effects of anisotropy on elastic moduli measured by nanoindentation in human tibial cortical bone. J. Biomed. Mater. Res. 57, 108 (2001).

28.B.O. Swanson , T.A. Blackledge , J. Beltran , C.Y. Hayashi : Variations in the material properties of spider dragline silk across species. Appl. Phys. Mater. Sci. Proc. 82, 213 (2006).

29.B.A. Lawrence , C.A. Vierra , A.M.F. Mooref : Molecular and mechanical properties of major ampullate silk of the black widow spider, Latrodectus hesperus. Biomacromolecules 5, 689 (2004).

30.S. Putthanarat , P. Tapadia , S. Zarkoob , L.D. Miller , R.K. Eby , W.W. Adams : The color of dragline silk produced in captivity by the spider Nephila clavipes. Polym. 45, 1933 (2004).

32.D.B. Zax , D.E. Armanios , S. Horak , C. Malowniak , Z.T. Yang : Variation of mechanical properties with amino acid content in the silk of Nephila clavipes. Biomacromolecules 5, 732 (2004).

33.B. Madsen , F. Vollrath : Mechanics and morphology of silk drawn from anesthetized spiders. Naturwissenschaften 87, 148 (2000).

34.G.R. Plaza , G.V. Guinea , J. Perez-Rigueiro , M. Elices : Thermo-hygro-mechanical behavior of spider dragline silk: Glassy and rubbery states. J. Polym. Sci., Part B: Polym. Phys. 44, 994 (2006).

35.M.J. Mayo , W.D. Nix : A micro-indentation study of superplasticity in Pb, Sn, and Sn–38 wt% Pb. Acta Metall. 36, 2183 (1988).

36.F. Vollrath , T. Holtet , H.C. Thogersen , S. Frische : Structural organization of spider silk. Proc. R. Soc. London, B: Biol. Sci. 263, 147 (1996).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: