Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-23T12:22:52.564Z Has data issue: false hasContentIssue false

Applications of graphite intercalation compounds

Published online by Cambridge University Press:  31 January 2011

M. Inagaki
Affiliation:
Department of Materials Science, Toyohashi University of Technology, Tempaku-cho, Toyohashi, 440 Japan
Get access

Abstract

The properties of graphite intercalation compounds (GIC's) are discussed with respect to possible applications. Five families of intercalates give high electrical conductivity to GIC's: pentafluorides leading to high conductivity, 108 S/m (higher than metallic copper); metal chlorides; fluorine and alkali metals with bismuth giving relatively high conductivity of the order of 107 S/m plus stability in air; and residual halogens showing extremely high stability under severe conditions, though the conductivity is only of the order of 106 S/m. Electrodes of different GIC's have been tried in primary and secondary batteries, where their characteristics are high electrical conductivity and easy diffusion of electrochemically active species between the graphite layers. Primary lithium batteries of a covalent graphite fluoride are now widely used commercially. Secondary batteries using different host graphites and intercalates give interesting results. Large amounts of hydrogen can be stored in the functional space in alkali metal-GIC's. The same GIC's show high coefficients of isotope separation of hydrogen at liquid nitrogen temperature. The structure and texture of the host graphite play a decisive role in the absorption and separation behaviors of GIC's. Exfoliated graphite prepared by rapid heating of GIC's or their residue compounds leads to flexible graphite sheets which have great industrial applications. Some problems connected with the production and use of these sheets are discussed.

Type
Commentaries and Reviews
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Inagaki, M. “Chemical Physics of Intercalation”, NATO-ASI series, edited by Legrand, A. P. and Flandrois, S. (Elsevier, 1987), p. 105; M. Inagaki “Graphite Intercalation Compounds”, Advanced Carbon Series II (Rearaizu-sha, Tokyo, 1989) (in press).Google Scholar
2Inagaki, M.TANSO 1988 [No. 133], 127 (1988).Google Scholar
3Setton, R.Synth. Met. 23, 467 (1988); ibid., 23, 511 (1988).Google Scholar
4Setton, R.Preparative Chemistry Using Supported Reagents, edited by Laszlo, P. (Academic Press, 1987), p. 255.CrossRefGoogle Scholar
5Setton, R.Synth. Met. 23, 511 (1988).Google Scholar
6Vogel, F.L.Bull. Am. Phys. Soc. 21, 262 (1976); J. Mater. Sci. 12, 982 (1977).Google Scholar
7Inagaki, M.Hyoumen 20, 130 (1982).Google Scholar
8Shioya, J.Yamaguchi, Y.Matsubara, H. and Murakami, S.Nihon Kagaku Kaishi 1986, 238 (1986).Google Scholar
9Matsubara, H.Yamaguchi, Y.Shioya, J. and Murakami, S.Synth. Met. 18, 503 (1987).CrossRefGoogle Scholar
10Kalnin, I.L. and Goldberg, H. A.Synth. Met. 8, 277 (1983).CrossRefGoogle Scholar
11Oshima, H. and Woollam, J. A.J. Appl. Phys. 53, 9220 (1982); H. Os-hima, J. A. Woollam A. Yavrouian and M. B. Dowell Synth. Met. 5, 113 (1983).CrossRefGoogle Scholar
12Chieu, T.C.Dresselhaus, M.S. and Endo, M.Phys. Rev. B26, 5867 (1982); T. C. Chieu G. Timp M. S. Dresselhaus and M. Endo ibid., 27, 3686 (1983); M. Endo T.C. Chieu G. Timp and M.S. Dressel-haus, Synth. Met. 8, 251 (1983).Google Scholar
13Flandrois, S.Masson, J. M.Rouillon, J. C.Gaultier, J. and Hauw, C.Synth. Met. 3, 1 (1981).Google Scholar
14Inagaki, M.Wang, Z. D.Okamoto, Y. and Ohira, M.Synth. Met. 20, 9 (1987).Google Scholar
15Ansart, A.Meschi, C. and Flandrois, S. 4th Int. Symp. on GICs (1987), Jerusalem.Google Scholar
16Gaier, J.R. and Jaworske, D. A.Synth. Met. 12, 525 (1985).CrossRefGoogle Scholar
17Sugiura, T.Iijima, T.Sato, M. and Fujimoto, K.4th Int. Symp. on GICs (1987), Jerusalem.Google Scholar
18Inagaki, M. and Wang, Z.D.Synth. Met. 20, 1 (1987).Google Scholar
19Wang, Z.D. and Inagaki, M.ibid., 25, 181 (1988).Google Scholar
20Inagaki, M. and Wang, Z. D.Colloq. Intl. sur les Composes Lamelaires (1988), Pont-a-Mousson, p. 35.Google Scholar
21Inagaki, M.Wang, Z.D. and Sakakibara, J. Synth. Met. (in press).Google Scholar
22Nakajima, T.Kawaguchi, M. and Watanabe, N.Z. Naturforsch. 36, 1419 (1981); Carbon 20, 287 (1982).CrossRefGoogle Scholar
23Nakajima, T.Kawaguchi, M. and Watanabe, N.Synth. Met. 7, 117 (1983).CrossRefGoogle Scholar
24Nakajima, T.Watanabe, N.Kameda, I. and Endo, M.Carbon 24, 343 (1985).Google Scholar
25Nakajima, T.Ino, T.Watanabe, N. and Takenaka, H.Carbon 26, 397 (1988).Google Scholar
26McRae, E.Mareche, J. F.Bendriss-Rerhrhaye, A., Lagrange, P. and Herold, A.Ann. Phys. C-2 11, 13 (1986).Google Scholar
27Lagrange, P. and Bendriss-Rerhrhaye, A., Carbon 26, 283 (1988).Google Scholar
28Gaier, J.R.Slabe, M.E. and Shaffer, N.ibid., 26, 381 (1988).Google Scholar
29Endo, M.Yamanashi, H.Doll, G.L. and Dresselhaus, M.S.J. Appl. Phys. 64, 2995 (1988).CrossRefGoogle Scholar
30Gaier, J.R. MRS Fall Meeting (1988), Boston, MA, Extended Abstracts, p. 149.Google Scholar
31Okazaki, R.Aoki, A.Tsubaki, K.Iijima, T. and Morita, A.National Tech. Rep. 24, 281 (1978).Google Scholar
32Kita, Y.Watanabe, N. and Fujii, Y.J. Am. Chem. Soc. 101, 3832 (1979).CrossRefGoogle Scholar
33Armand, M. and PTouzain, h.Mater. Sci. Engr. 31, 319 (1977).CrossRefGoogle Scholar
34Touzain, PH.Yazami, R. and Maire, J.J. Power Source 14, 99 (1985).CrossRefGoogle Scholar
35Nakajima, T.Electrochemica. Acta 27, 1535 (1982).CrossRefGoogle Scholar
36Touhara, H.Fujimoto, H.Watanabe, N. and Tressaud, A.Solid State Ionics 14, 163 (1984).CrossRefGoogle Scholar
37Dunning, J. S.Tiedemen, W. H.Hsuch, L. and Bennion, D. N.J. Elec-trochem. Soc. 118, 1886 (1971).Google Scholar
38Fujii, R.Denki-Kagaku 41, 52 (1973).Google Scholar
39Beck, F. and Krohn, H.Synth. Met. 7, 193 (1983).CrossRefGoogle Scholar
40Endo, M.Nakamura, J. and Touhara, H. MRS Fall Meeting (1988), Boston, MA, Extended Abstracts, p. 157.Google Scholar
41Flandrois, S.Masson, J.M. and Rouillon, J. C.Synth. Met. 3, 195 (1981).Google Scholar
42Flandrois, S. and Herran, J.Synth. Met. 14, 103 (1986).CrossRefGoogle Scholar
43Ohtani, S.Phung, H.L.Kubota, T.Sakaniwa, H. and Suzuki, M.Denki-Kagaku 44, 27 (1976); S. Ohtani K. Matsumoto and F. Mogi ibid., 50, 684 (1982).Google Scholar
44Tagusagawa, H. and Ontani, S. (private communication).Google Scholar
45Lalancette, J. M. and Roussel, R.Can. J. Chem. 54, 3541 (1976).Google Scholar
46Endo, M.Koyama, T. and Inagaki, M.Oyo-Buturi 49, 563 (1980); Synth. Met. 3, 177 (1981); M. Endo and M. Inagaki ibid., 7, 203 (1983).Google Scholar
47Inagaki, M.Uchida, K.Sakai, M. and Maeda, Y.Nihon-Kagaku-Kaishi 1983, 309 (1983); Y. Maeda H. Kitamura E. Itoh and M. Inagaki Synth. Met. 7, 211 (1983); Y. Maeda E. Itoh and M. Inagaki ibid., 20, 73 (1987).Google Scholar
48Inagaki, M.Itoh, E. and Maeda, Y.TANSO 1985 [No. 122], 134 (1985); M. Inagaki E. Itoh Y. Maeda and I. Tanaka Synth. Met. (to be published).CrossRefGoogle Scholar
49Huffman, F.N. and Haq, Z.Proc. 7th Int. Conf. on Thermoelectric Energy Conversion, Univ. Texas (1988), p. 1.Google Scholar
50Watanabe, K.Soma, M.Ohishi, T. and Tamaru, K.Nature 233, 160 (1971); K. Watanabe T. Kondow M. Soma T. Onishi and K. Tamaru Proc. Roy. Soc. A 333, 51 (1973).Google Scholar
51Lagrange, P.Metrot, A. and Herold, A.Compt. Rend. 275, C-765 (1972); P. Lagrange and A. Herold ibid., 281, C-381 (1975).Google Scholar
52Akuzawa, N.Katano, K.Ohmura, Y.Konishi, T.Amemiya, T.Terai, T. and Takahashi, Y.TANSO 1988 [No. 133], 100 (1988).CrossRefGoogle Scholar
53Terai, T. and Takahashi, Y.J. Nucl. Sci. Technol. 18, 643 (1981); Synth. Met. 7, 49 (1983); Carbon 22, 91 (1984).CrossRefGoogle Scholar
54Akuzawa, N.Amemiya, T.Terai, T. and Takahashi, Y.Science and New Applications of Carbon Fibers, Toyohashi, 113 (1984).Google Scholar
55Terai, T. Thesis, Tokyo Univ. (1983), p. 206.Google Scholar
56Berger, D. and Maire, J.Mater. Sci. Engr., 31, 335 (1977).CrossRefGoogle Scholar
57Inagaki, M.Muramatsu, K. and Maeda, Y.Synth. Met. 8, 335 (1983).CrossRefGoogle Scholar
58Inagaki, M.Shiwachi, Y. and Maeda, Y.J. Chem. Phys. 84, 847 (1984).Google Scholar
59Inagaki, M.Mine, H. and Sakai, M.Zairyo 37, 51 (1988).Google Scholar
60Jimenez-Gonzalez, H., Speck, J. S.Roth, G. and Dresselhaus, M.S.Carbon 24, 627 (1986).CrossRefGoogle Scholar
61Yoshida, A.Hishiyama, Y. and Inagaki, M. Carbon (to be published).Google Scholar
62Takada, Y. and Fujii, R. 11th Annual Meeting of Carbon Society of Japan (1984).Google Scholar
63Touzain, Ph.Michel, J. and Blum, P.Synth. Met. 8, 313 (1983).CrossRefGoogle Scholar
Pfluger, W.P.Kunzi, H. V. and Guntherodt, H.J.Appl. Phys. Lett. 35, 771 (1979).CrossRefGoogle Scholar
65Yoshino, K. and Ueno, H.TANSO 1989 [No. 136], 29 (1989).CrossRefGoogle Scholar
66Inagaki, M.TANSO 1985 [No. 122], 114 (1985).CrossRefGoogle Scholar