Skip to main content
×
Home
    • Aa
    • Aa

Aqueous red-emitting silicon nanoparticles for cellular imaging: Consequences of protecting against surface passivation by hydroxide and water for stable red emission

  • Sheng-Kuei Chiu (a1), Beth A. Manhat (a1), William J.I. DeBenedetti (a1), Anna L. Brown (a1), Katye Fichter (a2), Tania Vu (a2), Micah Eastman (a3), Jun Jiao (a3) and Andrea M. Goforth (a4)...
Abstract
Abstract

Stable, aqueous, red-to-near infrared emission is critical for the use of silicon nanoparticles (Si NPs) in biological fluorescence assays, but such Si NPs have been difficult to attain. We report a synthesis and surface modification strategy that protects Si NPs and preserves red photoluminescence (PL) in water for more than 6 mo. The Si NPs were synthesized via high temperature reaction, liberated from an oxide matrix, and functionalized via hydrosilylation to yield hydrophobic particles. The hydrophobic Si NPs were phase transferred to water using the surfactant cetyltrimethylammonium bromide (CTAB) with retention of red PL. CTAB apparently serves a double role in providing stable, aqueous, red-emitting Si NPs by (i) forming a hydrophobic barrier between the Si NPs and water and (ii) providing aqueous colloidal stability via the polar head group. We demonstrate preservation of the aqueous red emission of these Si NPs in biological media and examine the effects of pH on emission color.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: agoforth@pdx.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

J.B. Baxter and E.S. Aydil : Nanowire-based dye-sensitized solar cells. Appl. Phys. Lett. 86, 053114 (2005).

R. Plass , S. Pelet , J. Krueger , M. Gratzel , and U. Bach : Quantum dot sensitization of organic-inorganic hybrid solar cells. J. Phys. Chem. B 106, 7578 (2002).

X.H. Gao , Y.Y. Cui , R.M. Levenson , L.W.K. Chung , and S.M. Nie : In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22, 969 (2004).

J.H. Park , L. Gu , G. von Maltzahn , E. Ruoslahti , S.N. Bhatia , and M.J. Sailor : Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat. Mater. 8, 331 (2009).

L.T. Canham : Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046 (1990).

A.P. Alivisatos : Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100, 13226 (1996).

V.A. Belyakov , V.A. Burdov , R. Lockwood , and A. Meldrum : Silicon nanocrystals: Fundamental theory and implications for stimulated emission. Adv. Opt. Technol. 1 (2008), Article ID 279502.

M.A. Green , J.H. Zhao , A.H. Wang , P.J. Reece , and M. Gal : Efficient silicon light-emitting diodes. Nature 412, 805 (2001).

V. Torres-Costa , R.J. Martin-Palma , and J.M. Martinez-Duart : All-silicon color-sensitive photodetectors in the visible. Mater. Sci. Eng., C 27, 954 (2007).

R.J. Walters , G.I. Bourianoff , and H.A. Atwater : Field-effect electroluminescence in silicon nanocrystals. Nat. Mater. 4, 143 (2005).

A.M. Derfus , W.C.W. Chan , and S.N. Bhatia : Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 4, 11 (2004).

F. Erogbogbo , K-T. Yong , I. Roy , R. Hu , W-C. Law , W. Zhao , H. Ding , F. Wu , R. Kumar , M.T. Swihart , and P.N. Prasad : In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals. ACS Nano 5, 413 (2011).

B.A. Manhat , A.L. Brown , L.A. Black , J.B.A. Ross , K. Fichter , T. Vu , E. Richman , and A.M. Goforth : One-step melt synthesis of water-soluble, photoluminescent, surface-oxidized silicon nanoparticles for cellular imaging applications. Chem. Mater. 23, 2407 (2011).

M. Rosso-Vasic , E. Spruijt , Z. Popovic , K. Overgaag , B. van Lagen , B. Grandidier , D. Vanmaekelbergh , D. Dominguez-Gutierrez , L. De Cola , and H. Zuilhof : Amine-terminated silicon nanoparticles: Synthesis, optical properties and their use in bioimaging. J. Mater. Chem. 19, 5926 (2009).

A. Shiohara , S. Hanada , S. Prabakar , K. Fujioka , T.H. Lim , K. Yamamoto , P.T. Northcote , and R.D. Tilley : Chemical reactions on surface molecules attached to silicon quantum dots. J. Am. Chem. Soc. 132, 248 (2010).

J.H. Warner , H. Rubinsztein-Dunlop , and R.D. Tilley : Surface morphology dependent photoluminescence from colloidal silicon nanocrystals. J. Phys. Chem. B 109, 19064 (2005).

J.M. Buriak : Organometallic chemistry on silicon surfaces: Formation of functional monolayers bound through Si-C bonds. Chem. Commun. 1051 (1999).

J. Aldana , Y.A. Wang , and X.G. Peng : Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J. Am. Chem. Soc. 123, 8844 (2001).

L.T. Canham : Bioactive silicon structure fabrication through nanoetching techniques. Adv. Mater. 7, 1033 (1995).

J.F. Popplewell , S.J. King , J.P. Day , P. Ackrill , L.K. Fifield , R.G. Cresswell , M.L. Di Tada , and K. Liu : Kinetics of uptake and elimination of silicic acid by a human subject: A novel application of 32 Si and accelerator mass spectrometry. J. Inorg. Biochem. 69, 177 (1998).

Y. He , Z.H. Kang , Q.S. Li , C.H.A. Tsang , C.H. Fan , and S.T. Lee : Ultrastable, highly fluorescent, and water-dispersed silicon-based nanospheres as cellular probes. Angew. Chem. Int. Ed. 48, 128 (2009).

C.M. Hessel , E.J. Henderson , J.A. Kelly , R.G. Cavell , T.K. Sham , and J.G.C. Veinot : Origin of luminescence from silicon nanocrystals: A near edge x-ray absorption fine structure (NEXAFS) and x-ray excited optical luminescence (XEOL) study of oxide-embedded and free-standing systems. J. Phys. Chem. C 112, 14247 (2008).

R.A. Bley , S.M. Kauzlarich , J.E. Davis , and H.W.H. Lee : Characterization of silicon nanoparticles prepared from porous silicon. Chem. Mater. 8, 1881 (1996).

H. Tamura , M. Ruckschloss , T. Wirschem , and S. Veprek : Origin of the green-blue luminescence from nanocrystalline silicon. Appl. Phys. Lett. 65, 1537 (1994).

Y. Kanemitsu : Luminescence properties of nanometer-sized Si crystallites-core and surface-states. Phys. Rev. B 49, 16845 (1994).

S. Godefroo , M. Hayne , M. Jivanescu , A. Stesmans , M. Zacharias , O.I. Lebedev , G. Van Tendeloo , and V.V. Moshchalkov : Classification and control of the origin of photoluminescence from Si nanocrystals. Nat. Nanotechnol. 3, 174 (2008).

S. Yang , W. Li , B. Cao , H. Zeng , and W. Cai : Origin of blue emission from silicon nanoparticles: Direct transition and interface recombination. J. Phys. Chem. C 115, 21056 (2011).

W. de Boer , D. Timmerman , K. Dohnalova , I.N. Yassievich , H. Zhang , W.J. Buma , and T. Gregorkiewicz : Red spectral shift and enhanced quantum efficiency in phonon-free photoluminescence from silicon nanocrystals. Nat. Nanotechnol. 5, 878 (2010).

J. Vincent , V. Maurice , X. Paquez , O. Sublemontier , Y. Leconte , O. Guillois , C. Reynaud , N. Herlin-Boime , O. Raccurt , and F. Tardif : Effect of water and UV passivation on the luminescence of suspensions of silicon quantum dots. J. Nanopart. Res. 12, 39 (2010).

P.R. Coxon , Q. Wang , and Y. Chao : An abrupt switch between the two photoluminescence bands within alkylated silicon nanocrystals. J. Appl. Phys. D 44, 495301 (2011).

Y. Chao , A. Houlton , B.R. Horrocks , M.R.C. Hunt , N.R.J. Poolton , J. Yang , and L. Siller : Optical luminescence from alkyl-passivated Si nanocrystals under vacuum ultraviolet excitation: Origin and temperature dependence of the blue and orange emissions. Appl. Phys. Lett. 88, 263119 (2006).

Z.Y. Zhou , L. Brus , and R. Friesner : Electronic structure and luminescence of 1.1- and 1.4-nm silicon nanocrystals: Oxide shell versus hydrogen passivation. Nano Lett. 3, 163 (2003).

X. Wang , R.Q. Zhang , T.A. Niehaus , and T. Frauenheim : Excited state properties of allylamine-capped silicon quantum dots. J. Phys. Chem. C 111, 2394 (2007).

M. Rosso-Vasic , E. Spruijt , B. van Lagen , L. De Cola , and H. Zuilhof : Alkyl-functionalized oxide-free silicon nanoparticles: Synthesis and optical properties. Small 4, 1835 (2008).

J.D. Holmes , K.J. Ziegler , R.C. Doty , L.E. Pell , K.P. Johnston , and B.A. Korgel : Highly luminescent silicon nanocrystals with discrete optical transitions. J. Am. Chem. Soc. 123, 3743 (2001).

L. Mangolini , D. Jurbergs , E. Rogojina , and U. Kortshagen : High efficiency photoluminescence from silicon nanocrystals prepared by plasma synthesis and organic surface passivation. Phys. Status Solidi C 3, 3975 (2006).

D. Jurbergs , E. Rogojina , L. Mangolini , and U. Kortshagen : Silicon nanocrystals with ensemble quantum yields exceeding 60%. Appl. Phys. Lett. 88, 233116 (2006).

Z.H. Kang , Y. Liu , C.H.A. Tsang , D.D.D. Ma , X. Fan , N.B. Wong , and S.T. Lee : Water-soluble silicon quantum dots with wavelength-tunable photoluminescence. Adv. Mater. 21, 661 (2009).

C.M. Hessel , E.J. Henderson , and J.G.C. Veinot : Hydrogen silsesquioxane: A molecular precursor for nanocrystalline Si-SiO2 composites and freestanding hydride-surface-terminated silicon nanoparticles. Chem. Mater. 18, 6139 (2006).

A. Gupta , M.T. Swihart , and H. Wiggers : Luminescent colloidal dispersion of silicon quantum dots from microwave plasma synthesis: Exploring the photoluminescence behavior across the visible spectrum. Adv. Funct. Mater. 19, 696 (2009).

D.S. English , L.E. Pell , Z.H. Yu , P.F. Barbara , and B.A. Korgel : Size tunable visible luminescence from individual organic monolayer stabilized silicon nanocrystal quantum dots. Nano Lett. 2, 681 (2002).

C.M. Hessel , D. Reid , M.G. Panthani , M.R. Rasch , B.W. Goodfellow , J. Wei , H. Fujii , V. Akhavan , and B.A. Korgel : Synthesis of ligand-stabilized silicon nanocrystals with size-dependent photoluminescence spanning visible to near-infrared wavelengths. Chem. Mater. 24, 393 (2012).

X.G. Li , Y.Q. He , S.S. Talukdar , and M.T. Swihart : Process for preparing macroscopic quantities of brightly photoluminescent silicon nanoparticles with emission spanning the visible spectrum. Langmuir 19, 8490 (2003).

X.M. Zhang , D. Neiner , S.Z. Wang , A.Y. Louie , and S.M. Kauzlarich : A new solution route to hydrogen-terminated silicon nanoparticles: Synthesis, functionalization and water stability. Nanotechnology 18, 095601 (2007).

J.H. Warner , A. Hoshino , K. Yamamoto , and R.D. Tilley : Water-soluble photoluminescent silicon quantum dots. Angew. Chem. Int. Ed. 44, 4550 (2005).

S.W. Lin and D.H. Chen : Synthesis of water-soluble blue photoluminescent silicon nanocrystals with oxide surface passivation. Small 5, 72 (2009).

E.V. Rogozhina , D.A. Eckhoff , E. Gratton , and P.V. Braun : Carboxyl functionalization of ultrasmall luminescent silicon nanoparticles through thermal hydrosilylation. J. Mater. Chem. 16, 1421 (2006).

R.D. Tilley and K. Yamamoto : The microemulsion synthesis of hydrophobic and hydrophilic silicon nanocrystals. Adv. Mater. 18, 2053 (2006).

A. Brewer and K. Von Haeften : In-situ passivation and blue luminescence of silicon clusters using a cluster-beam/H2O co-deposition production method. Appl. Phys. Lett. 94, 261102 (2009).

R.D. Tilley , J.H. Warner , K. Yamamoto , I. Matsui , and H. Fujimori : Micro-emulsion synthesis of monodisperse surface stabilized silicon nanocrystals. Chem. Commun. 1833 (2005).

J.P. Wilcoxon , G.A. Samara , and P.N. Provencio : Optical and electronic properties of Si nanoclusters synthesized in inverse micelles. Phys. Rev. B 60, 2704 (1999).

G. Allan , C. Delerue , and M. Lannoo : On the nature of luminescent surface states of semiconductor nanocrystallites. Phys. Rev. Lett. 76, 2961 (1996).

M. Ray , S. Sarkar , N.R. Bandyopadhyay , S.M. Hossain , and A.K. Pramanick : Silicon and silicon oxide core-shell nanoparticles: Structural and photoluminescence characteristics. J. Appl. Phys. 105, 074301 (2009).

G.G. Qin , H.Z. Song , B.R. Zhang , J. Lin , J.Q. Duan , and G.Q. Yao : Experimental evidence for luminescence from silicon oxide layers in oxidized porous silicon. Phys. Rev. B 54, 2548 (1996).

Z.F. Li and E. Ruckenstein : Water-soluble poly(acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescent biological staining labels. Nano Lett. 4, 1463 (2004).

K. Kravitz , A. Kamyshny , A. Gedanken , and S. Magdassi : Solid state synthesis of water-dispersible silicon nanoparticles from silica nanoparticles. J. Solid State Chem. 183, 1442 (2010).

F. Erogbogbo , K.T. Yong , I. Roy , G.X. Xu , P.N. Prasad , and M.T. Swihart : Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano 2, 873 (2008).

F. Erogbogbo , C-A. Tien , C-W. Chang , K-T. Yong , W-C. Law , H. Ding , I. Roy , M.T. Swihart , and P.N. Prasad : Bioconjugation of luminescent silicon quantum dots for selective uptake by cancer cells. Bioconjugate Chem. 22, 1081 (2011).

E.J. Henderson , J.A. Kelly , and J.G.C. Veinot : Influence of HSiO1.5 sol-gel polymer structure and composition on the size and luminescent properties of silicon nanocrystals. Chem. Mater. 21, 5426 (2009).

L. Porres , A. Holland , L. Palsson , A.P. Monkman , C. Kemp , and A. Beeby : Absolute measurements of photoluminescence quantum yields of solutions using an integrating sphere. J. Fluorescence 16, 267 (2006).

C. Hessel , E.J. Henderson , and J.G.C. Veinot : An investigation of the formation and growth of oxide-embedded silicon nanocrystals in hydrogen silsesquioxane-derived nanocomposites. J. Phys. Chem. C 111, 6956 (2007).

G.S. Higashi , Y.J. Chabal , G.W. Trucks , and K. Raghavachari : Ideal hydrogen termination of the Si(111) surface. Appl. Phys. Lett. 56, 656 (1990).

R.M. Pasternack , S.R. Amy , and Y.J. Chabal : Attachment of 3-(aminopropyl)triethoxysilane on silicon oxide surfaces: Dependence on solution temperature. Langmuir 24, 12963 (2008).

P. Thissen , T. Peixoto , R.C. Longo , W.G. Peng , K. Cho , and Y.J. Chabal : Activation of surface hydroxyl groups by modification of H-terminated Si(111) surfaces. J. Am. Chem. Soc. 134, 8869 (2012).

S. Mazumder , R. Dey , M.K. Mitra , S. Mukherjee , and G.C. Das : Review: Biofunctionalized quantum dots in biology and medicine. J. Nanomater. (2009). doi: 10.1155/2009/815734.

N. Shirahata , M.R. Linford , S. Furumi , L. Pei , Y. Sakka , R.J. Gates , and M.C. Asplund : Laser-derived one-pot synthesis of silicon nanocrystals terminated with organic monolayers. Chem. Commun. 4684 (2009).

J. Liu and X. Du : Ph- and competitor-driven nanovalves of cucurbit[7]uril pseudorotaxanes based on mesoporous silica supports for controlled release. J. Mater. Chem. 20, 3642 (2010).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Type Description Title
PDF
Supplementary Materials

Chiu et al. supplementary material
Supplementary figure S1

 PDF (8.0 MB)
8.0 MB

Metrics

Full text views

Total number of HTML views: 7
Total number of PDF views: 36 *
Loading metrics...

Abstract views

Total abstract views: 349 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th August 2017. This data will be updated every 24 hours.