Skip to main content
×
×
Home

Aqueous red-emitting silicon nanoparticles for cellular imaging: Consequences of protecting against surface passivation by hydroxide and water for stable red emission

  • Sheng-Kuei Chiu (a1), Beth A. Manhat (a1), William J.I. DeBenedetti (a1), Anna L. Brown (a1), Katye Fichter (a2), Tania Vu (a2), Micah Eastman (a3), Jun Jiao (a3) and Andrea M. Goforth (a4)...
Abstract

Stable, aqueous, red-to-near infrared emission is critical for the use of silicon nanoparticles (Si NPs) in biological fluorescence assays, but such Si NPs have been difficult to attain. We report a synthesis and surface modification strategy that protects Si NPs and preserves red photoluminescence (PL) in water for more than 6 mo. The Si NPs were synthesized via high temperature reaction, liberated from an oxide matrix, and functionalized via hydrosilylation to yield hydrophobic particles. The hydrophobic Si NPs were phase transferred to water using the surfactant cetyltrimethylammonium bromide (CTAB) with retention of red PL. CTAB apparently serves a double role in providing stable, aqueous, red-emitting Si NPs by (i) forming a hydrophobic barrier between the Si NPs and water and (ii) providing aqueous colloidal stability via the polar head group. We demonstrate preservation of the aqueous red emission of these Si NPs in biological media and examine the effects of pH on emission color.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: agoforth@pdx.edu
References
Hide All
1.Baxter, J.B. and Aydil, E.S.: Nanowire-based dye-sensitized solar cells. Appl. Phys. Lett. 86, 053114 (2005).
2.Plass, R., Pelet, S., Krueger, J., Gratzel, M., and Bach, U.: Quantum dot sensitization of organic-inorganic hybrid solar cells. J. Phys. Chem. B 106, 7578 (2002).
3.Gao, X.H., Cui, Y.Y., Levenson, R.M., Chung, L.W.K., and Nie, S.M.: In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22, 969 (2004).
4.Park, J.H., Gu, L., von Maltzahn, G., Ruoslahti, E., Bhatia, S.N., and Sailor, M.J.: Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat. Mater. 8, 331 (2009).
5.Canham, L.T.: Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 57, 1046 (1990).
6.Alivisatos, A.P.: Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100, 13226 (1996).
7.Belyakov, V.A., Burdov, V.A., Lockwood, R., and Meldrum, A.: Silicon nanocrystals: Fundamental theory and implications for stimulated emission. Adv. Opt. Technol. 1 (2008), Article ID 279502.
8.Green, M.A., Zhao, J.H., Wang, A.H., Reece, P.J., and Gal, M.: Efficient silicon light-emitting diodes. Nature 412, 805 (2001).
9.Torres-Costa, V., Martin-Palma, R.J., and Martinez-Duart, J.M.: All-silicon color-sensitive photodetectors in the visible. Mater. Sci. Eng., C 27, 954 (2007).
10.Walters, R.J., Bourianoff, G.I., and Atwater, H.A.: Field-effect electroluminescence in silicon nanocrystals. Nat. Mater. 4, 143 (2005).
11.Derfus, A.M., Chan, W.C.W., and Bhatia, S.N.: Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 4, 11 (2004).
12.Erogbogbo, F., Yong, K-T., Roy, I., Hu, R., Law, W-C., Zhao, W., Ding, H., Wu, F., Kumar, R., Swihart, M.T., and Prasad, P.N.: In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals. ACS Nano 5, 413 (2011).
13.Manhat, B.A., Brown, A.L., Black, L.A., Ross, J.B.A., Fichter, K., Vu, T., Richman, E., and Goforth, A.M.: One-step melt synthesis of water-soluble, photoluminescent, surface-oxidized silicon nanoparticles for cellular imaging applications. Chem. Mater. 23, 2407 (2011).
14.Rosso-Vasic, M., Spruijt, E., Popovic, Z., Overgaag, K., van Lagen, B., Grandidier, B., Vanmaekelbergh, D., Dominguez-Gutierrez, D., De Cola, L., and Zuilhof, H.: Amine-terminated silicon nanoparticles: Synthesis, optical properties and their use in bioimaging. J. Mater. Chem. 19, 5926 (2009).
15.Shiohara, A., Hanada, S., Prabakar, S., Fujioka, K., Lim, T.H., Yamamoto, K., Northcote, P.T., and Tilley, R.D.: Chemical reactions on surface molecules attached to silicon quantum dots. J. Am. Chem. Soc. 132, 248 (2010).
16.Warner, J.H., Rubinsztein-Dunlop, H., and Tilley, R.D.: Surface morphology dependent photoluminescence from colloidal silicon nanocrystals. J. Phys. Chem. B 109, 19064 (2005).
17.Buriak, J.M.: Organometallic chemistry on silicon surfaces: Formation of functional monolayers bound through Si-C bonds. Chem. Commun. 1051 (1999).
18.Aldana, J., Wang, Y.A., and Peng, X.G.: Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J. Am. Chem. Soc. 123, 8844 (2001).
19.Canham, L.T.: Bioactive silicon structure fabrication through nanoetching techniques. Adv. Mater. 7, 1033 (1995).
20.Popplewell, J.F., King, S.J., Day, J.P., Ackrill, P., Fifield, L.K., Cresswell, R.G., Di Tada, M.L., and Liu, K.: Kinetics of uptake and elimination of silicic acid by a human subject: A novel application of 32 Si and accelerator mass spectrometry. J. Inorg. Biochem. 69, 177 (1998).
21.He, Y., Kang, Z.H., Li, Q.S., Tsang, C.H.A., Fan, C.H., and Lee, S.T.: Ultrastable, highly fluorescent, and water-dispersed silicon-based nanospheres as cellular probes. Angew. Chem. Int. Ed. 48, 128 (2009).
22.Hessel, C.M., Henderson, E.J., Kelly, J.A., Cavell, R.G., Sham, T.K., and Veinot, J.G.C.: Origin of luminescence from silicon nanocrystals: A near edge x-ray absorption fine structure (NEXAFS) and x-ray excited optical luminescence (XEOL) study of oxide-embedded and free-standing systems. J. Phys. Chem. C 112, 14247 (2008).
23.Bley, R.A., Kauzlarich, S.M., Davis, J.E., and Lee, H.W.H.: Characterization of silicon nanoparticles prepared from porous silicon. Chem. Mater. 8, 1881 (1996).
24.Tamura, H., Ruckschloss, M., Wirschem, T., and Veprek, S.: Origin of the green-blue luminescence from nanocrystalline silicon. Appl. Phys. Lett. 65, 1537 (1994).
25.Kanemitsu, Y.: Luminescence properties of nanometer-sized Si crystallites-core and surface-states. Phys. Rev. B 49, 16845 (1994).
26.Godefroo, S., Hayne, M., Jivanescu, M., Stesmans, A., Zacharias, M., Lebedev, O.I., Van Tendeloo, G., and Moshchalkov, V.V.: Classification and control of the origin of photoluminescence from Si nanocrystals. Nat. Nanotechnol. 3, 174 (2008).
27.Yang, S., Li, W., Cao, B., Zeng, H., and Cai, W.: Origin of blue emission from silicon nanoparticles: Direct transition and interface recombination. J. Phys. Chem. C 115, 21056 (2011).
28.de Boer, W., Timmerman, D., Dohnalova, K., Yassievich, I.N., Zhang, H., Buma, W.J., and Gregorkiewicz, T.: Red spectral shift and enhanced quantum efficiency in phonon-free photoluminescence from silicon nanocrystals. Nat. Nanotechnol. 5, 878 (2010).
29.Vincent, J., Maurice, V., Paquez, X., Sublemontier, O., Leconte, Y., Guillois, O., Reynaud, C., Herlin-Boime, N., Raccurt, O., and Tardif, F.: Effect of water and UV passivation on the luminescence of suspensions of silicon quantum dots. J. Nanopart. Res. 12, 39 (2010).
30.Coxon, P.R., Wang, Q., and Chao, Y.: An abrupt switch between the two photoluminescence bands within alkylated silicon nanocrystals. J. Appl. Phys. D 44, 495301 (2011).
31.Chao, Y., Houlton, A., Horrocks, B.R., Hunt, M.R.C., Poolton, N.R.J., Yang, J., and Siller, L.: Optical luminescence from alkyl-passivated Si nanocrystals under vacuum ultraviolet excitation: Origin and temperature dependence of the blue and orange emissions. Appl. Phys. Lett. 88, 263119 (2006).
32.Zhou, Z.Y., Brus, L., and Friesner, R.: Electronic structure and luminescence of 1.1- and 1.4-nm silicon nanocrystals: Oxide shell versus hydrogen passivation. Nano Lett. 3, 163 (2003).
33.Wang, X., Zhang, R.Q., Niehaus, T.A., and Frauenheim, T.: Excited state properties of allylamine-capped silicon quantum dots. J. Phys. Chem. C 111, 2394 (2007).
34.Liu, S.M.: Luminescent silicon nanoparticles formed in solution. J. Nanosci. Nanotechnol. 8, 1110 (2008).
35.Rosso-Vasic, M., Spruijt, E., van Lagen, B., De Cola, L., and Zuilhof, H.: Alkyl-functionalized oxide-free silicon nanoparticles: Synthesis and optical properties. Small 4, 1835 (2008).
36.Holmes, J.D., Ziegler, K.J., Doty, R.C., Pell, L.E., Johnston, K.P., and Korgel, B.A.: Highly luminescent silicon nanocrystals with discrete optical transitions. J. Am. Chem. Soc. 123, 3743 (2001).
37.Mangolini, L., Jurbergs, D., Rogojina, E., and Kortshagen, U.: High efficiency photoluminescence from silicon nanocrystals prepared by plasma synthesis and organic surface passivation. Phys. Status Solidi C 3, 3975 (2006).
38.Jurbergs, D., Rogojina, E., Mangolini, L., and Kortshagen, U.: Silicon nanocrystals with ensemble quantum yields exceeding 60%. Appl. Phys. Lett. 88, 233116 (2006).
39.Kang, Z.H., Liu, Y., Tsang, C.H.A., Ma, D.D.D., Fan, X., Wong, N.B., and Lee, S.T.: Water-soluble silicon quantum dots with wavelength-tunable photoluminescence. Adv. Mater. 21, 661 (2009).
40.Hessel, C.M., Henderson, E.J., and Veinot, J.G.C.: Hydrogen silsesquioxane: A molecular precursor for nanocrystalline Si-SiO2 composites and freestanding hydride-surface-terminated silicon nanoparticles. Chem. Mater. 18, 6139 (2006).
41.Gupta, A., Swihart, M.T., and Wiggers, H.: Luminescent colloidal dispersion of silicon quantum dots from microwave plasma synthesis: Exploring the photoluminescence behavior across the visible spectrum. Adv. Funct. Mater. 19, 696 (2009).
42.English, D.S., Pell, L.E., Yu, Z.H., Barbara, P.F., and Korgel, B.A.: Size tunable visible luminescence from individual organic monolayer stabilized silicon nanocrystal quantum dots. Nano Lett. 2, 681 (2002).
43.Hessel, C.M., Reid, D., Panthani, M.G., Rasch, M.R., Goodfellow, B.W., Wei, J., Fujii, H., Akhavan, V., and Korgel, B.A.: Synthesis of ligand-stabilized silicon nanocrystals with size-dependent photoluminescence spanning visible to near-infrared wavelengths. Chem. Mater. 24, 393 (2012).
44.Li, X.G., He, Y.Q., Talukdar, S.S., and Swihart, M.T.: Process for preparing macroscopic quantities of brightly photoluminescent silicon nanoparticles with emission spanning the visible spectrum. Langmuir 19, 8490 (2003).
45.Zhang, X.M., Neiner, D., Wang, S.Z., Louie, A.Y., and Kauzlarich, S.M.: A new solution route to hydrogen-terminated silicon nanoparticles: Synthesis, functionalization and water stability. Nanotechnology 18, 095601 (2007).
46.Warner, J.H., Hoshino, A., Yamamoto, K., and Tilley, R.D.: Water-soluble photoluminescent silicon quantum dots. Angew. Chem. Int. Ed. 44, 4550 (2005).
47.Lin, S.W. and Chen, D.H.: Synthesis of water-soluble blue photoluminescent silicon nanocrystals with oxide surface passivation. Small 5, 72 (2009).
48.Rogozhina, E.V., Eckhoff, D.A., Gratton, E., and Braun, P.V.: Carboxyl functionalization of ultrasmall luminescent silicon nanoparticles through thermal hydrosilylation. J. Mater. Chem. 16, 1421 (2006).
49.Tilley, R.D. and Yamamoto, K.: The microemulsion synthesis of hydrophobic and hydrophilic silicon nanocrystals. Adv. Mater. 18, 2053 (2006).
50.Brewer, A. and Von Haeften, K.: In-situ passivation and blue luminescence of silicon clusters using a cluster-beam/H2O co-deposition production method. Appl. Phys. Lett. 94, 261102 (2009).
51.Tilley, R.D., Warner, J.H., Yamamoto, K., Matsui, I., and Fujimori, H.: Micro-emulsion synthesis of monodisperse surface stabilized silicon nanocrystals. Chem. Commun. 1833 (2005).
52.Wilcoxon, J.P., Samara, G.A., and Provencio, P.N.: Optical and electronic properties of Si nanoclusters synthesized in inverse micelles. Phys. Rev. B 60, 2704 (1999).
53.Allan, G., Delerue, C., and Lannoo, M.: On the nature of luminescent surface states of semiconductor nanocrystallites. Phys. Rev. Lett. 76, 2961 (1996).
54.Ray, M., Sarkar, S., Bandyopadhyay, N.R., Hossain, S.M., and Pramanick, A.K.: Silicon and silicon oxide core-shell nanoparticles: Structural and photoluminescence characteristics. J. Appl. Phys. 105, 074301 (2009).
55.Qin, G.G., Song, H.Z., Zhang, B.R., Lin, J., Duan, J.Q., and Yao, G.Q.: Experimental evidence for luminescence from silicon oxide layers in oxidized porous silicon. Phys. Rev. B 54, 2548 (1996).
56.Li, Z.F. and Ruckenstein, E.: Water-soluble poly(acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescent biological staining labels. Nano Lett. 4, 1463 (2004).
57.Kravitz, K., Kamyshny, A., Gedanken, A., and Magdassi, S.: Solid state synthesis of water-dispersible silicon nanoparticles from silica nanoparticles. J. Solid State Chem. 183, 1442 (2010).
58.Erogbogbo, F., Yong, K.T., Roy, I., Xu, G.X., Prasad, P.N., and Swihart, M.T.: Biocompatible luminescent silicon quantum dots for imaging of cancer cells. ACS Nano 2, 873 (2008).
59.Erogbogbo, F., Tien, C-A., Chang, C-W., Yong, K-T., Law, W-C., Ding, H., Roy, I., Swihart, M.T., and Prasad, P.N.: Bioconjugation of luminescent silicon quantum dots for selective uptake by cancer cells. Bioconjugate Chem. 22, 1081 (2011).
60.Henderson, E.J., Kelly, J.A., and Veinot, J.G.C.: Influence of HSiO1.5 sol-gel polymer structure and composition on the size and luminescent properties of silicon nanocrystals. Chem. Mater. 21, 5426 (2009).
61.Operation Manual for Quanta-phi Rev. C. (Horiba Jobin-Yvon, Edison, NJ, 2010).
62.Porres, L., Holland, A., Palsson, L., Monkman, A.P., Kemp, C., and Beeby, A.: Absolute measurements of photoluminescence quantum yields of solutions using an integrating sphere. J. Fluorescence 16, 267 (2006).
63.NIH ImageJ: http://rsbweb.nih.gov/ij/ (accessed May 29, 2012).
64.Hessel, C., Henderson, E.J., and Veinot, J.G.C.: An investigation of the formation and growth of oxide-embedded silicon nanocrystals in hydrogen silsesquioxane-derived nanocomposites. J. Phys. Chem. C 111, 6956 (2007).
65.Veinot, J.G.C.: Sol-gel precursors for Group 14 nanocrystals. Chem. Commun. 46, 8404 (2010).
66.Higashi, G.S., Chabal, Y.J., Trucks, G.W., and Raghavachari, K.: Ideal hydrogen termination of the Si(111) surface. Appl. Phys. Lett. 56, 656 (1990).
67.Michalak, D.J., Amy, S.R., Aureau, D., Dai, M., Esteve, A., and Chabal, Y.J.: Nanopatterning Si(111) surfaces as selective surface-chemistry route. Nat. Mater. 9, 266 (2010).
68.Pasternack, R.M., Amy, S.R., and Chabal, Y.J.: Attachment of 3-(aminopropyl)triethoxysilane on silicon oxide surfaces: Dependence on solution temperature. Langmuir 24, 12963 (2008).
69.Thissen, P., Peixoto, T., Longo, R.C., Peng, W.G., Cho, K., and Chabal, Y.J.: Activation of surface hydroxyl groups by modification of H-terminated Si(111) surfaces. J. Am. Chem. Soc. 134, 8869 (2012).
70.Mazumder, S., Dey, R., Mitra, M.K., Mukherjee, S., and Das, G.C.: Review: Biofunctionalized quantum dots in biology and medicine. J. Nanomater. (2009). doi: 10.1155/2009/815734.
71.Shirahata, N., Linford, M.R., Furumi, S., Pei, L., Sakka, Y., Gates, R.J., and Asplund, M.C.: Laser-derived one-pot synthesis of silicon nanocrystals terminated with organic monolayers. Chem. Commun. 4684 (2009).
72.Liu, J. and Du, X.: Ph- and competitor-driven nanovalves of cucurbit[7]uril pseudorotaxanes based on mesoporous silica supports for controlled release. J. Mater. Chem. 20, 3642 (2010).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
PDF
Supplementary materials

Chiu et al. supplementary material
Supplementary figure S1

 PDF (8.0 MB)
8.0 MB

Metrics

Full text views

Total number of HTML views: 11
Total number of PDF views: 66 *
Loading metrics...

Abstract views

Total abstract views: 609 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th July 2018. This data will be updated every 24 hours.