Skip to main content
×
×
Home

Bioprosthetic heart valves’ structural integrity improvement through exogenous amino donor treatments

  • Yang Lei (a1), Wanyu Jin (a1), Rifang Luo (a1), Gaocan Li (a1), Gaoyang Guo (a1) and Yunbing Wang (a1)...
Abstract

Valvular heart diseases lead to over 300,000 heart valve replacements worldwide each year. Bioprosthetic heart valves (BHVs), derived from glutaraldehyde (GLUT) crosslinked porcine or bovine pericardium, are often used. However, valve failure can occur within 12–15 years due to progressive degradation and/or calcification. Being innovated by previous amino reagent studies used for GLUT detoxification and carbodiimide [1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, EDC] chemistry, in this study, we developed a new fabrication method that utilizes exogenous amino donor arginine or lysine carbodiimide combined treatments to better stabilize the extracellular matrix of porcine pericardium. The carboxyl group density, amine content, differential scanning calorimetry, collagenase and elastase degradation, calcification by rat subdermal implantation, cytotoxicity, and platelet adhesion were characterized. We demonstrated that exogenous amino donor carbodiimide combined treatment for pericardiums had better resistance to elastase degradation (1.63 ± 0.11% and 1.44 ± 0.24% in arginine or lysine versus 3.68 ± 0.16% and 3.04 ± 0.11% in GLUT and GLUT/EDC control) and calcification (0.624 ± 0.193 and 0.637 ± 0.213 Ca µg/mg tissue in arginine or lysine versus 1.610 ± 0.124 and 1.512 ± 0.075 Ca µg/mg tissue in GLUT and GLUT/EDC control). This new strategy combined arginine or lysine and carbodiimide crosslinking would be a promising method to produce more robust BHVs with better structural stability and anticalcification property.

Copyright
Corresponding author
a)Address all correspondence to these authors. e-mail: leiyang@scu.edu.cn
References
Hide All
1.Manji, R.A., Menkis, A.H., Ekser, B., and Cooper, D.K.: Porcine bioprosthetic heart valves: The next generation. Am. Heart J. 164, 177 (2012).
2.Rapoport, H.S., Connolly, J.M., Fulmer, J., Dai, N., Murti, B.H., Gorman, R.C., Gorman, J.H., Alferiev, I., and Levy, R.J.: Mechanisms of the in vivo inhibition of calcification of bioprosthetic porcine aortic valve cusps and aortic wall with triglycidylamine/mercapto bisphosphonate. Biomaterials 28, 690 (2007).
3.Hedayat, M., Asgharzadeh, H., and Borazjani, I.: Platelet activation of mechanical versus bioprosthetic heart valves during systole. J. Biomech. 56, 111 (2017).
4.Human, P. and Zilla, P.: The possible role of immune responses in bioprosthetic heart valve failure. J. Heart Valve Dis. 10, 460 (2001).
5.Zilla, P., Brink, J., Human, P., and Bezuidenhout, D.: Prosthetic heart valves: Catering for the few. Biomaterials 29, 385 (2008).
6.Vyavahare, N., Ogle, M., Schoen, F.J., Zand, R., Gloeckner, D.C., Sacks, M., and Levy, R.J.: Mechanisms of bioprosthetic heart valve failure: Fatigue causes collagen denaturation and glycosaminoglycan loss. J. Biomed. Mater. Res. 46, 44 (1999).
7.Sacks, M.S. and Schoen, F.J.: Collagen fiber disruption occurs independent of calcification in clinically explanted bioprosthetic heart valves. J. Biomed. Mater. Res., Part A 62, 359 (2002).
8.Levy, R.J., Vyavahare, N.M., Ashworth, P., Bianco, R., and Schoen, F.J.: Inhibition of cusp and aortic wall calcification in ethanol- and aluminum-treated bioprosthetic heart valves in sheep: Background, mechanisms, and synergism. J. Heart Valve Dis. 12, 216 (2003).
9.Paule, W.J., Bernick, S., Strates, B., and Nimni, M.E.: Calcification of implanted vascular tissues associated with elastin in an experimental animal model. J. Biomed. Mater. Res. 26, 1169 (1992).
10.Anwar, R.A.: Elastin: A brief review. Biochem. Educ. 18, 162 (1990).
11.Tripi, D.R. and Vyavahare, N.R.: Neomycin and pentagalloyl glucose enhanced cross-linking for elastin and glycosaminoglycans preservation in bioprosthetic heart valves. J. Biomater. Appl. 28, 757 (2014).
12.Bowes, J.H. and Kenten, R.H.: Some observations on the amino acid distribution of collagen, elastin and reticular tissue from different sources. Biochem. J. 45, 281 (1949).
13.Zilla, P., Fullard, L., Trescony, P., Meinhart, J., Bezuidenhout, D., Gorlitzer, M., Human, P., and Von, O.U.: Glutaraldehyde detoxification of aortic wall tissue: A promising perspective for emerging bioprosthetic valve concepts. J. Heart Valve Dis. 6, 510 (1997).
14.Zilla, P., Bezuidenhout, D., Weissenstein, C., van der Walt, A., and Human, P.: Diamine extension of glutaraldehyde crosslinks mitigates bioprosthetic aortic wall calcification in the sheep model. J. Biomed. Mater. Res., Part A 56, 56 (2001).
15.Grimm, M., Grabenwöger, M., Eybl, E., Moritz, A., Böck, P., Müller, M.M., and Wolner, E.: Improved biocompatibility of bioprosthetic heart valves by L-glutamic acid treatment. J. Card. Surg. 7, 58 (1992).
16.Jee, K.S., Kim, Y.S., Park, K.D., and Kim, Y.H.: A novel chemical modification of bioprosthetic tissues using L-arginine. Biomaterials 24, 3409 (2003).
17.Girardot, J.M. and Girardot, M.N.: Amide cross-linking: An alternative to glutaraldehyde fixation. J. Heart Valve Dis. 5, 518 (1996).
18.Dewanjee, M.K.: Treatment of collagenous tissue with glutaraldehyde and aminodiphosphonate calcification inhibitor. US Patent US4553974A (1985).
19.Tam, H., Zhang, W., Feaver, K.R., Parchment, N., Sacks, M.S., and Vyavahare, N.: A novel crosslinking method for improved tear resistance and biocompatibility of tissue based biomaterials. Biomaterials 66, 83 (2015).
20.Chen, S., Li, X., Yang, Z., Zhou, S., Luo, R., Maitz, M.F., Zhao, Y., Wang, J., Xiong, K., and Huang, N.: A simple one-step modification of various materials for introducing effective multi-functional groups. Colloids Surf., B 113, 125 (2014).
21.Chan, J.C., Burugapalli, K., Naik, H., Kelly, J.L., and Pandit, A.: Amine functionalization of cholecyst-derived extracellular matrix with generation 1 PAMAM dendrimer. Biomacromolecules 9, 528 (2008).
22.Weng, K.L. and Khor, E.: Validation of the shrinkage temperature of animal tissue for bioprosthetic heart valve application by differential scanning calorimetry. Biomaterials 16, 251 (1995).
23.Leong, J., Munnelly, A., Liberio, B., Cochrane, L., and Vyavahare, N.: Neomycin and carbodiimide crosslinking as an alternative to glutaraldehyde for enhanced durability of bioprosthetic heart valves. J. Biomater. Appl. 27, 948 (2013).
24.Jiang, B.P.D., Suen, R., Wertheim, J.M.P.D., and Ameer, G.S.D.: Targeting heparin to collagen within extracellular matrix significantly reduces thrombogenicity and improves endothelialization of decellularized tissues. Biomacromolecules 17, 3940 (2016).
25.Tripi, D.R. and Vyavahare, N.R.: Neomycin and pentagalloyl glucose enhanced cross-linking for elastin and glycosaminoglycans preservation in bioprosthetic heart valves. J. Biomater. Appl. 28, 757 (2014).
26.Tam, H., Zhang, W., Infante, D., Parchment, N., Sacks, M., and Vyavahare, N.: Fixation of bovine pericardium-based tissue biomaterial with irreversible chemistry improves biochemical and biomechanical properties. J. Cardiovasc. Transl. Res. 10, 1 (2017).
27.Nimni, M.E., Cheung, D., Strates, B., Kodama, M., and Sheikh, K.: Chemically modified collagen: A natural biomaterial for tissue replacement. J. Biomed. Mater. Res., Part A 21, 741 (1987).
28.Tam, H., Zhang, W., Feaver, K.R., Parchment, N., Sacks, M.S., and Vyavahare, N.: A novel crosslinking method for improved tear resistance andbiocompatibility of tissue based biomaterials. Biomaterials 66, 83 (2015).
29.Isenburg, J.C., Simionescu, D.T., and Vyavahare, N.R.: Elastin stabilization in cardiovascular implants: Improved resistance to enzymatic degradation by treatment with tannic acid. Biomaterials 25, 3293 (2004).
30.Luck, G., Liao, H., Murray, N.J., Grimmer, H.R., Warminski, E.E., Williamson, M.P., Lilley, T.H., and Haslam, E.: Polyphenols, astringency and proline-rich proteins. Phytochemistry 37, 357 (1994).
31.Grabarek, Z. and Gergely, J.: Zero-length crosslinking procedure with the use of active esters. Anal. Biochem. 185, 131 (1990).
32.Ma, B., Wang, X., Wu, C., and Chang, J.: Crosslinking strategies for preparation of extracellular matrix-derived cardiovascular scaffolds. Regener. Biomater. 1, 81 (2014).
33.Caballero, A., Sulejmani, F., Martin, C., Pham, T., and Sun, W.: Evaluation of transcatheter heart valve biomaterials: Biomechanical characterization of bovine and porcine pericardium. J. Mech. Behav. Biomed. Mater. 75, 486 (2017).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 1
Total number of PDF views: 9 *
Loading metrics...

Abstract views

Total abstract views: 35 *
Loading metrics...

* Views captured on Cambridge Core between 5th July 2018 - 18th July 2018. This data will be updated every 24 hours.