Skip to main content

Black titania/graphene oxide nanocomposite films with excellent photothermal property for solar steam generation

  • Xinghang Liu (a1), Baofei Hou (a1), Gang Wang (a1), Zhenqi Cui (a1), Xiang Zhu (a1) and Xianbao Wang (a1)...

Solar steam generation is an efficient and green technology for desalination and drinking water purification, however, impeded by high cost, low efficiency, and complicated process. Black titania is expected to exhibit excellent solar steam performance due to its outstanding light absorption properties, chemical stability, low cost, and innocuity. Herein, we design a high absorbing and efficient solar steam generation system based on a black titania/graphene oxide nanocomposite film affixed to airlaid paper wrapped over the surface of expandable polyethylene foam; the system possesses several important criteria required for the ideal solar steam generator: wide-spectrum absorption, adequate water supply, reduced heat loss for localized water heating, and porous structure for steam flow. Remarkably, we realized a solar thermal conversion efficiency of 69.1% under illumination of 1 kW/m2 without solar concentration, and the device delivered remarkable cycle stability.

Corresponding author
a) Address all correspondence to this author. e-mail:
Hide All

Contributing Editor: Xiaobo Chen

Hide All
1. Mekonnen, M.M. and Hoekstra, A.Y.: Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323 (2016).
2. Shannon, M.A., Bohn, P.W., Elimelech, M., Georgiadis, J.G., Mariñas, B.J., and Mayes, A.M.: Science and technology for water purification in the coming decades. Nature 452, 301310 (2008).
3. La Riviere, J.M.: Threats to the world’s water. Sci. Am. 261, 8094 (1989).
4. Elimelech, M. and Phillip, W.A.: The future of seawater desalination: Energy, technology, and the environment. Science 333, 712717 (2011).
5. Miller, G.W.: Integrated concepts in water reuse: Managing global water needs. Desalination 187, 6575 (2006).
6. Gude, V.G., Nirmalakhandan, N., and Deng, S.: Desalination using solar energy: Towards sustainability. Energy 36, 7885 (2011).
7. Lenert, A. and Wang, E.N.: Optimization of nanofluid volumetric receivers for solar thermal energy conversion. Sol. Energy 86, 253265 (2012).
8. Naim, M.M. and El Kawi, M.A.A.: Non-conventional solar stills Part 1. Non-conventional solar stills with charcoal particles as absorber medium. Desalination 153, 5564 (2003).
9. Murugavel, K.K. and Srithar, K.: Performance study on basin type double slope solar still with different wick materials and minimum mass of water. Renewable Energy 36, 612620 (2011).
10. Al-Hayeka, I. and Badran, O.O.: The effect of using different designs of solar stills on water distillation. Desalination 169, 121127 (2004).
11. Ansari, O., Asbik, M., Bah, A., Arbaoui, A., and Khmou, A.: Desalination of the brackish water using a passive solar still with a heat energy storage system. Desalination 324, 1020 (2013).
12. Lewis, N.S.: Research opportunities to advance solar energy utilization. Science 351, aad1920 (2016).
13. Baffou, G. and Quidant, R.: Thermo-plasmonics: Using metallic nanostructures as nano-sources of heat. Laser Photonics Rev. 7, 171187 (2013).
14. Jin, H., Lin, G., Bai, L., Zeiny, A., and Wen, D.: Steam generation in a nanoparticle-based solar receiver. Nano Energy 28, 397406 (2016).
15. Neumann, O., Feronti, C., Neumann, A.D., Dong, A., Schell, K., Lu, B., Kim, E., Quinn, M., Thompson, S., Grady, N., Nordlander, P., Oden, M., and Halas, N.J.: Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles. Proc. Natl. Acad. Sci. 110, 1167711681 (2013).
16. Neumann, O., Urban, A.S., Day, J., Lal, S., Nordlander, P., and Halas, N.J.: Solar vapor generation enabled by nanoparticles. ACS Nano 7, 4249 (2012).
17. Zhang, H., Chen, H-J., Du, X., and Wen, D.: Photothermal conversion characteristics of gold nanoparticle dispersions. Sol. Energy 100, 141147 (2014).
18. Zhou, L., Tan, Y., Ji, D., Zhu, B., Zhang, P., Xu, J., Gan, Q., Yu, Z., and Zhu, J.: Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2, e1501227 (2016).
19. Zhou, L., Tan, Y., Wang, J., Xu, W., Yuan, Y., Cai, W., Zhu, S., and Zhu, J.: 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photonics 10, 393398 (2016).
20. Wang, H., Miao, L., and Tanemura, S.: Morphology control of Ag polyhedron nanoparticles for cost-effective and fast solar steam generation. Solar RRL 1, 1600023 (2017).
21. Ni, G., Miljkovic, N., Ghasemi, H., Huang, X., Boriskina, S.V., Lin, C-T., Wang, J., Xu, Y., Rahman, M.M., and Zhang, T.: Volumetric solar heating of nanofluids for direct vapor generation. Nano Energy 17, 290301 (2015).
22. Bae, K., Kang, G., Cho, S.K., Park, W., Kim, K., and Padilla, W.J.: Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 6, 10103 (2015).
23. Zhang, L., Tang, B., Wu, J., Li, R., and Wang, P.: Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating. Adv. Mater. 27, 48894894 (2015).
24. Hu, X., Xu, W., Zhou, L., Tan, Y., Wang, Y., Zhu, S., and Zhu, J.: Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun. Adv. Mater. 29, 1604031 (2017).
25. Ghasemi, H., Ni, G., Marconnet, A.M., Loomis, J., Yerci, S., Miljkovic, N., and Chen, G.: Solar steam generation by heat localization. Nat. Commun. 5, 4449 (2014).
26. Li, X., Xu, W., Tang, M., Zhou, L., Zhu, B., Zhu, S., and Zhu, J.: Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc. Natl. Acad. Sci. 113, 1395313958 (2016).
27. Xu, N., Hu, X., Xu, W., Li, X., Zhou, L., Zhu, S., and Zhu, J.: Mushrooms as efficient solar steam-generation devices. Adv. Mater. 29, 1606762 (2017).
28. Li, Y., Lu, D., Zhou, L., Ye, M., Xiong, X., Yang, K., Pan, Y., Chen, M., Wu, P., Li, T., Chen, Y., Wang, Z., and Xia, Q.: Bi-modified Pd-based/carbon-doped TiO2 hollow spheres catalytic for ethylene glycol electrooxidation in alkaline medium. J. Mater. Res. 31, 37123722 (2016).
29. Liu, Y., Su, D., Zhang, Y., Wang, L., Yang, G., Shen, F., Deng, S., Zhang, X., and Zhang, S.: Anodized TiO2 nanotubes coated with Pt nanoparticles for enhanced photoelectrocatalytic activity. J. Mater. Res. 32, 757765 (2017).
30. Lyu, Z., Liu, B., Wang, R., and Tian, L.: Synergy of palladium species and hydrogenation for enhanced photocatalytic activity of {001} facets dominant TiO2 nanosheets. J. Mater. Res. 32, 27812789 (2017).
31. Xia, T., Zhang, W., Murowchick, J.B., Liu, G., and Chen, X.: A facile method to improve the photocatalytic and lithium-ion rechargeable battery performance of TiO2 nanocrystals. Adv. Energy Mater. 3, 15161523 (2013).
32. Xia, T., Zhang, C., Oyler, N.A., and Chen, X.: Hydrogenated TiO2 nanocrystals: A novel microwave absorbing material. Adv. Mater. 25, 69056910 (2013).
33. Xia, T., Zhang, C., Oyler, N.A., and Chen, X.: Enhancing microwave absorption of TiO2 nanocrystals via hydrogenation. J. Mater. Res. 29, 21982210 (2014).
34. Wen, J., Li, X., Liu, W., Fang, Y., Xie, J., and Xu, Y.: Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chin. J. Catal. 36, 20492070 (2015).
35. Xu, Y., Mo, Y., Tian, J., Wang, P., Yu, H., and Yu, J.: The synergistic effect of graphitic N and pyrrolic N for the enhanced photocatalytic performance of nitrogen-doped graphene/TiO2 nanocomposites. Appl. Catal., B 181, 810817 (2016).
36. Chen, X., Liu, L., and Huang, F.: Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 44, 18611885 (2015).
37. Liu, Y., Mu, K., Zhang, Y., Wang, L., Yang, G., Shen, F., Deng, S., Zhang, X., and Zhang, S.: Facile synthesis of a narrow-gap titanium dioxide anatase/rutile nanofiber film on titanium foil with high photocatalytic activity under sunlight. Int. J. Hydrogen Energy 41, 1032710334 (2016).
38. Liu, X., Gao, S., Xu, H., Lou, Z., Wang, W., Huang, B., and Dai, Y.: Green synthetic approach for Ti3+ self-doped TiO2−x nanoparticles with efficient visible light photocatalytic activity. Nanoscale 5, 18701875 (2013).
39. Zhou, Y., Chen, C., Wang, N., Li, Y., and Ding, H.: Stable Ti3+ self-doped anatase-rutile mixed TiO2 with enhanced visible light utilization and durability. J. Phys. Chem. C 120, 61166124 (2016).
40. Chen, X., Liu, L., Peter, Y.Y., and Mao, S.S.: Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746750 (2011).
41. Liu, L. and Chen, X.: Titanium dioxide nanomaterials: Self-structural modifications. Chem. Rev. 114, 98909918 (2014).
42. Zhu, G., Xu, J., Zhao, W., and Huang, F.: Constructing black titania with unique nanocage structure for solar desalination. ACS Appl. Mater. Interfaces 8, 3171631721 (2016).
43. Ye, M., Jia, J., Wu, Z., Qian, C., Chen, R., O’Brien, P.G., Sun, W., Dong, Y., and Ozin, G.A.: Synthesis of black TiO x nanoparticles by Mg reduction of TiO2 nanocrystals and their application for solar water evaporation. Adv. Energy Mater. 7, 1601811 (2017).
44. Ren, R., Wen, Z., Cui, S., Hou, Y., Guo, X., and Chen, J.: Controllable synthesis and tunable photocatalytic properties of Ti3+-doped TiO2 . Sci. Rep. 5, 10714 (2015).
45. Gupta, S.K., Desai, R., Jha, P.K., Sahoo, S., and Kirin, D.: Titanium dioxide synthesized using titanium chloride: Size effect study using Raman spectroscopy and photoluminescence. J. Raman Spectrosc. 41, 350355 (2009).
46. Wang, Z., Yang, C., Lin, T., Yin, H., Chen, P., Wan, D., Xu, F., Huang, F., Lin, J., Xie, X., and Jiang, M.: H-doped black titania with very high solar absorption and excellent photocatalysis enhanced by localized surface plasmon resonance. Adv. Funct. Mater. 23, 54445450 (2013).
47. Nakamura, I., Negishi, N., Kutsuna, S., Ihara, T., Sugihara, S., and Takeuchi, K.: Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal. J. Mol. Catal. A: Chem. 161, 205212 (2000).
48. Wang, G., Wang, H., Ling, Y., Tang, Y., Yang, X., Fitzmorris, R.C., Wang, C., Zhang, J.Z., and Li, Y.: Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 11, 30263033 (2011).
49. Chen, D., Feng, H., and Li, J.: Graphene oxide: Preparation, functionalization, and electrochemical applications. Chem. Rev. 112, 60276053 (2012).
50. Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., and Ruoff, R.S.: Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 22, 39063924 (2010).
51. Li, X., Yu, J., Wageh, S., Al-Ghamdi, A.A., and Xie, J.: Graphene in photocatalysis: A review. Small 12, 66406696 (2016).
52. Li, X., Shen, R., Ma, S., Chen, X., and Xie, J.: Graphene-based heterojunction photocatalysts. Appl. Surf. Sci. 430, 53107 (2018).
53. Yin, L., Zhao, M., Hu, H., Ye, J., and Wang, D.: Synthesis of graphene/tourmaline/TiO2 composites with enhanced activity for photocatalytic degradation of 2-propanol. Chin. J. Catal. 38, 13071314 (2017).
54. Boukhvalov, D.W., Katsnelson, M.I., and Son, Y-W.: Origin of anomalous water permeation through graphene oxide membrane. Nano Lett. 13, 39303935 (2013).
55. Yan, L., Chang, Y-N., Zhao, L., Gu, Z., Liu, X., Tian, G., Zhou, L., Ren, W., Jin, S., and Yin, W.: The use of polyethylenimine-modified graphene oxide as a nanocarrier for transferring hydrophobic nanocrystals into water to produce water-dispersible hybrids for use in drug delivery. Carbon 57, 120129 (2013).
56. Hao, Q., Hao, S., Niu, X., Li, X., Chen, D., and Ding, H.: Enhanced photochemical oxidation ability of carbon nitride by π–π stacking interactions with graphene. Chin. J. Catal. 38, 278286 (2017).
57. Yang, Y., Ma, Z., Xu, L., Wang, H., and Fu, N.: Preparation of reduced graphene oxide/meso-TiO2/Au NPs ternary composites and their visible-light-induced photocatalytic degradation n of methylene blue. Appl. Surf. Sci. 369, 576583 (2016).
58. Lai, C., Wang, M-M., Zeng, G-M., Liu, Y-G., Huang, D-L., Zhang, C., Wang, R-Z., Xu, P., Cheng, M., Huang, C., Wu, H-P., and Qin, L.: Synthesis of surface molecular imprinted TiO2/graphene photocatalyst and its highly efficient photocatalytic degradation of target pollutant under visible light irradiation. Appl. Surf. Sci. 390, 368376 (2016).
59. Wang, G., Fu, Y., Ma, X., Pi, W., Liu, D., and Wang, X.: Reusable reduced graphene oxide based double-layer system modified by polyethylenimine for solar steam generation. Carbon 114, 117124 (2017).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Liu et al. supplementary material
Liu et al. supplementary material 1

 Word (91 KB)
91 KB


Full text views

Total number of HTML views: 6
Total number of PDF views: 27 *
Loading metrics...

Abstract views

Total abstract views: 135 *
Loading metrics...

* Views captured on Cambridge Core between 19th February 2018 - 18th March 2018. This data will be updated every 24 hours.