Skip to main content Accessibility help

Bubble formation in nuclear glasses: A review

  • Laura Leay (a1) and Mike T. Harrison (a2)


Highly radioactive waste is incorporated into a glass matrix to convert it into a safe, passive form suitable for long-term storage and disposal. It is currently known that alpha decay can generate gaseous species, which can nucleate into bubbles, either through the production of helium or from ballistic collisions with the glass network that liberate oxygen. An effective method to probe this phenomenon utilizes ion beams to either directly implant helium or investigate the damage due to ballistic collisions. This paper provides an overview of the methodology, summarizes the results of current studies, and draws comparisons between them. We find that the irradiation scheme as well as the temperature and composition of the glass are important in determining whether bubble formation will occur. We also explore how analytical techniques can promote bubble formation and suggest avenues for further work.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.



Hide All
1.Weber, W.J., Ewing, R.C., Angell, C.A., Arnold, G.W., Cormack, A.N., Delaye, J.M., Griscom, D.L., Hobb, L.W., Navrotsky, A., Price, D.L., Stoneham, A.M., and Weinberg, M.C.: Radiation effects in glasses used for immobilization of high-level waste and plutonium disposition. J. Mater. Res. 12, 1946 (1997).
2.Kerrache, A. and Delaye, J-M.: Interstitial sites for He incorporation in nuclear glasses and links to the structure: Results from numerical investigation. Nucl. Instrum. Methods Phys. Res., Sect. B 326, 269 (2014).
3.Shackleford, J.F.: Gas solubility and diffusion in oxide glasses—Implications for nuclear wasteforms. Procedia Mater. Sci. 9, 278 (2014).
4.Gin, S., Abdelouas, A., Criscenti, L.J., Ebert, W.L., Ferrand, K., Geisler, T., Harrison, M.T., Inagaki, Y., Mitsui, S., Mueller, K.T., Marra, J.C., Pantano, C.G., Pierce, E.M., Ryan, J.V., Chofield, J.M., Steefel, C.I., and Vienna, J.D.: An international initiative on long-term behavior of high-level nuclear waste glass. Mater. Today 16, 243 (2013).
5.Nuclear Decommissioning Authority: Experimental Studies of the Chemical Durability of U.K. HLW and ILW Glass; RWM005105, AMEC/103498/03 (Amec: Didcot, UK, 2016).
6.Taylor, T.A., Short, R.J., Gribble, N.R., Roe, J., and Steele, C.J.: Rhenium volatilisation as caesium perrhenate from simulated vitrified high level waste from a melter crucible. In GLOBAL 2013 Conference Proceedings, American Nuclear Society, Vol. 1663 (American Nuclear Society: La Grange Park, Illinois, 2013); p. 450.
7.Peuget, S., Cachia, J-N., Jégou, C., Deschanels, X., Roudil, D., Broudic, V., Delaye, J-M., and Bart, J-M.: Irradiation stability of R7T7-type borosilicate glass. J. Nucl. Mater. 354, 1 (2006).
8.Peuget, S., Fares, T., Maugeri, E.A., Carabello, R., Charpentier, T., Martel, L., Somers, J., Janssen, A., Wiss, T., Rozenblum, F., Magnin, M., Deschanels, X., and Jégou, C.: Effect of 10B(n, α)7Li irradiation on the structure of a sodium borosilicate glass. Nucl. Instrum. Methods Phys. Res., Sect. B 327, 22 (2014).
9.DeNatale, J.F. and Howitt, D.C.: A mechanism for radiation damage in silicate glasses. Nucl. Instrum. Methods Phys. Res., Sect. B 1, 489 (1984).
10.Ollier, N., Rizza, G., Boizot, B., and Petite, G.: Effects of temperature and flux on oxygen bubble formation in Li borosilicate glass under electron beam irradiation. J. Appl. Phys. 99, 073511 (2006).
11.Mir, A.H., Boizot, B., Charpentier, T., Gennisson, M., Odorico, M., Podor, R., Jégou, C., Bouffard, S., and Peuget, S.: Surface and bulk electron irradiation effects in simple and complex glasses. J. Non-Cryst. Solids 453, 141 (2016).
12.DeNatale, J.F. and Howitt, D.G.: The gamma-irradiation of nuclear waste glasses. Radiat. Eff. 91, 89 (1985).
13.McGann, O.J., Bingham, P.A., Hand, R.J., Gandy, A.S., Kavčič, M., Žitnic, M., Bučar, K., Edge, R., and Hyatt, N.C.: The effects of γ-radiation on model vitreous wasteforms intended for the disposal of intermediate and high level radioactive wastes in the United Kingdom. J. Nucl. Mater. 429, 353 (2012).
14.Manara, D., GranDjean, A., and Neuville, D.R.: Advances in understanding the structure of borosilicate glasses: A Raman spectroscopy study. Am. Mineral. 94, 777 (2009).
15.Calas, G., Cormier, L., Galoisy, L., and Jollivet, P.: Structure–property relationships in multicomponent oxide glasses. C. R. Chim. 5, 831 (2002).
16.Calas, G., Galoisy, L., Cormier, L., Ferlat, G., and Lelong, G.: The structural properties of cations in nuclear glasses. Procedia Mater. Sci. 7, 23 (2014).
17.Shackelford, J.F.: Gas solubility and diffusion in oxide glasses—Implications for nuclear wasteforms. Procedia Mater. Sci. 7, 278285 (2014).
18.Shelby, J.E.: Helium diffusion and solubility in K2O–SiO2 glasses. J. Am. Ceram. Soc. 57, 260263 (1974).
19.Gutierrez, G., Peuget, S., Hinks, J.A., Greaves, G., Donnelly, S.E., Oliviero, E., and Jégou, C.: Helium bubble formation in nuclear glass by in situ TEM ion implantation. J. Nucl. Mater. 452, 565 (2014).
20.Hall, A.R., Dalton, J.T., Hudson, B., and Marples, J.A.C.: Development and radiation stability of glasses for highly radioactive wastes. In Proceeding of the Symposium on Management of Radioactive Wastes from the Nuclear Fuel Cycle, Vol. 2 (International Atomic Energy Agency: Vienna, Austria, 1976); p. 3.
21.Howitt, D.G., Chan, H.W., DeNatale, J.F., and Heuer, J.P.: Mechanism for the radiolytically induced decomposition of soda–silicate glasses. J. Am. Ceram. Soc. 74, 1145 (1991).
22.Boizot, B., Ollier, N., Olivier, F., Petite, G., Ghalen, D., and Malchukova, E.: Irradiation effects in simplified nuclear waste glass. Nucl. Instrum. Methods Phys. Res., Sect. B 240, 146 (2005).
23.DeNatale, J.F., Howitt, D.G., and Arnold, G.W.: Radiation damage in silicate glass. Radiat. Eff. 98, 63 (1986).
24.Evron, R., Cohen, Y., Regev, O., and Eyal, Y.: Ion Implantation Induced Microstructural Damage in a Nuclear Waste Glass (Nuclear Society of Israel: Haifa, Israel, 1994); pp. VIII-2VIII-7.
25.Mir, A.H., Peuget, S., Toulemonde, M., Jégou, C., Miro, S., and Bouffard, S.: Defect recovery and damage reduction in borosilicate glasses under double ion beam irradiation. Europhys. Lett. 112, 36002–1 (2015).
26.Karakurt, G., Abdelouas, A., Guin, J-P., Nivard, M., Sauvage, T., Paris, M., and Bardeau, J-F.: Understanding of the mechanical and structural changes induced by alpha particles and heavy ions in the French simulated nuclear waste glass. J. Nucl. Mater. 475, 243 (2016).
27.Chen, L., Zhang, D.F., Lv, P., Zhang, J.D., Du, Z., Yuan, W., Nan, S., Zhu, Z.H., and Wang, T.S.: Evolutions of molecular oxygen formation and sodium migration in Xe ion irradiated borosilicate glasses. J. Non-Cryst. Solids 448, 6 (2016).
28.Dube, C.L., Stennett, M.C., Gandy, A.S., and Hyatt, N.C.: Simulation of alpha decay of actinides in iron phosphate glasses by ion irradiation. Nucl. Instrum. Methods Phys. Res., Sect. B 371, 424 (2016).
29.Harrison, M.T.: Vitrification of high level waste in the UK. Procedia Mater. Sci. 7, 10 (2014).
30.Ziegler, J.F., Biersack, J.P., and Littmark, U.: The Stopping and Range of Ions in Matter (Pergamon, New York, 1985).
31.Bethe, H. and Ashkin, J.: Experimental Nuclear Physics, Segré, E., ed. (J. Wiley, New York, 1953); p. 253.
32.Lindhard, J., Scharff, M., and Schiott, H.E.: Range concepts and heavy ion ranges. Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 33, 1 (1963).
33.Sigmund, P. and Schinner, A.: Progress in understanding heavy-ion stopping. Nucl. Instrum. Methods Phys. Res., Sect. B 382, 14 (2016).
34.Burns, W.G., Hughes, A.E., Marples, J.A.C., Neilson, R.S., and Stoneham, A.M.: Effects of radiation on the leach rates of vitrified radioactive waste. J. Nucl. Mater. 107, 245 (1982).
35.Leay, L., Bower, W., Horne, G., Wady, P., Baidak, A., Pottinger, M., Nancekievill, M., Smith, A.D., Watson, S., Green, P.R., Lennox, B., Laverne, J.A., and Pimboltt, S.M.: Development of irradiation capabilities to address the challenges of the nuclear industry. Nucl. Instrum. Methods Phys. Res., Sect. B 343, 6269 (2015).
36.Wady, P.T., Draude, A., Shubeta, S.M., Smith, A.D., Mason, N., Pimblott, S.M., and Jimenez-Melero, E.: Accelerated radiation damage test facility using a 5 MV tandem ion accelerator. Nucl. Instrum. Methods Phys. Res., Sect. A 806, 109 (2016).
37.Arribart, H. and Abriou, D.: Ten years of atomic force microscopy in glass research. Ceram. Silik. 44, 121 (2000).
38.Mir, A.H., Monnet, I., Touelmonde, M., Bouffard, S., Jégou, C., and Peuget, S.: Mono and sequential ion irradiation induced damage formation and damage recovery in oxide glasses: Stopping power dependence of the mechanical properties. J. Nucl. Mater. 469, 244 (2016).
39.Terekhov, A.Y., Heuser, B.J., Okuniewski, M.A., Averback, R.S., Seifert, S., and Jemian, P.R.: Small-angle X-ray scattering measurements of helium-bubble formation in borosilicate glass. J. Appl. Crystallogr. 39, 647 (2006).
40.Chamssedine, F., Sauvage, T., Peuget, S., Fares, T., and Martin, G.: Helium diffusion coefficient measurements in R7T7 nuclear glass by 3He(d,α)1H nuclear reaction analysis. J. Nucl. Mater. 400, 175 (2010).
41.Fares, T., Peuget, S., Chamssedine, F., Sauvage, T., Bouty, O., Broudic, V., Deschanels, X., Maugeri, E., Bès, R., and Jégou, C.: Helium solubility in SON68 nuclear waste glass. J. Am. Ceram. Soc. 95, 3854 (2012).
42.Bès, R., Sauvage, T., Peuget, S., Haussy, J., Chamssedine, F., Oliviero, E., Fares, T., and Vincent, L.: Helium mobility in SON68 borosilicate nuclear glass: A nuclear reaction analysis approach. J. Nucl. Mater. 443, 544 (2013).
43.Markelj, S., Ogorodnikova, O.V., Pelicon, P., Schwarz Selinger, T., Vavpetič, P., and Čadež, I.: In situ nuclear reaction analysis of D retention in undamaged and self-damaged tungsten under atomic D exposure. Phys. Scr. T159, 014047 (2014).
44.Peuget, S., Delaye, J-M., and Jégou, C.: Specific outcomes of the research on the radiation stability of the French nuclear glass towards alpha decay accumulation. J. Nucl. Mater. 444, 76 (2014).
45.Poon, M., Macaulany-Newcombe, R.G., Davis, J.W., and Haasz, A.A.: Flux dependence of deuterium retention in single crystal tungsten. J. Nucl. Mater. 307–311(Part 1), 723 (2002).
46.Callisti, M., Karlik, M., and Polcar, T.: Bubbles formation in helium ion irradiated Cu/W multilayer nanocomposites: Effects on structure and mechanical properties. J. Nucl. Mater. 473, 18 (2016).
47.Fréchard, S., Walls, M., Koiak, M., Chevallier, J.P., Henry, J., and Gorse, D.: Study by EELS of helium bubbles in a martensitic steel. J. Nucl. Mater. 393, 102 (2009).
48.Prikhodko, K. and Emelyanova, O.: Using EELS analysis in STEM to investigate the helium content in irradiated materials. In European Microscopy Congress 2016 Proceedings (Wiley: Hoboken, NJ, 2016); session IM08-410, number 5844.
49.Bowden, M., Dixon, N.M., Gardiner, J.D., and Carter, S.F.: Raman microscope analysis of gaseous and solid inclusions in fluoride glass optical fibres. J. Mater. Sci.: Mater. Electron. 1, 34 (1990).
50.Wang, J-C., Guo, Q-B., Liu, X-F., Dai, Y., Wang, Z-Y., and Qiu, J-R.: Bubble generation in germanate glass induced by femtosecond laser. Chin. Phys. Lett. 33, 036101 (2016).
51.Ollier, N., Champagnon, B., Boizot, B., Guyot, Y., Panczer, G., and Padlyak, B.: Influence of external β-irradiation in oxide glasses. J. non-Crst. Solids 323, 200 (2003).
52.Cheng, S., Yang, G., Zhao, Y., Peng, M., Skibsted, J., and Yue, Y.: Quantification of the boron speciation in alkali borosilicate glasses by electron energy loss spectroscopy. Sci. Rep. 5, 17526 (2015).
53.Mir, A.H., Monnet, I., Boizot, B., Jegou, C., and Peuget, S.: Electron and electron-ion sequential irradiation of borosilicate glasses: Impact of the pre-existing defects. J. Nucl. Mater. 4889, 91 (2017).
54.Rose, P.B., Woodward, D.I., Ojovan, M.I., Hyatt, N.C., and Lee, W.E.: Crystallisation of a simulated borosilicate high-level waste glass produced on a full-scale vitrification line. J. Non-Cryst. Solids 357, 2989 (2011).


Bubble formation in nuclear glasses: A review

  • Laura Leay (a1) and Mike T. Harrison (a2)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed