Skip to main content

Corrosion behavior of 2198 Al–Cu–Li alloy in different aging stages in 3.5 wt% NaCl aqueous solution

  • Yanlong Zou (a1), Xia Chen (a1) and Bin Chen (a2)

In this paper, corrosion behavior of 2198 Al–Cu–Li alloy in different aging stages is investigated using immersion and electrochemical measurements in 3.5 wt% NaCl aqueous solution. The corrosion resistance is found to decrease from the solution-anneal to the peak-aged condition but increase after the peak-aged, which is due to microstructure evolution of three main kinds of precipitating phases with the aging process: T1 (Al2CuLi), θ′ (Al2Cu), and a few δ′ (Al3Li) phases. The anode T1 phase grows and increases with the aging treatment and becomes nearly unchanged after the peak-aged. Moreover, the cathode θ′ phase slightly decreases in the over-aged. The potentiodynamic polarization curves also indicate the most positive corrosion potential and the lowest corrosion current density in the peak-aged. The results of electrochemical impedance spectroscopy are in agreement with the corrosion morphologies. Furthermore, the related equivalent circuit is established to investigate the corrosion mechanism of this alloy.

Corresponding author
a)Address all correspondence to this author. e-mail:
Hide All

Contributing Editor: Jürgen Eckert

Hide All
1.Ahmed, B. and Wu, S.J.: Aluminum lithium alloys (Al–Li–Cu–X)-new generation material for aerospace applications. Appl. Mech. Mater. 440, 104 (2013).
2.Carrick, D.M., Hogg, S.C., and Wilcox, G.D.: Corrosion of an advanced Al–Cu–Li alloy for aerospace applications. Mater. Sci. Forum 765, 629 (2013).
3.Goebel, J., Ghidini, T., and Graham, A.J.: Stress-corrosion cracking characterisation of the advanced aerospace Al–Li 2099-T86 alloy. Mater. Sci. Eng., A. 673, 16 (2016).
4.Jata, K.V., Hopkins, A.K., and Rioja, R.J.: The anisotropy and texture of Al–Li alloys. Mater. Sci. Forum 217, 647 (1996).
5.Koch, U.: Advanced weldable high-strength Al–Cu–Li alloy for aerospace applications. Mater. Sci. Forum 242, 243 (1997).
6.Rioja, R.J.: Fabrication methods to manufacture isotropic Al–Li alloys and products for space and aerospace applications. Mater. Sci. Eng., A. 257, 100 (1998).
7.Kai, P.W.: Local chemistry and growth of single corrosion pits in aluminum. J. Electrochem. Soc. 137, 3010 (1990).
8.Soboyejo, W.O. and Srivatsan, T.S.: Advanced Structural Materials: Properties, Design Optimization, and Applications (CRC Press, Boca Raton, FL, 2006).
9.Araullo-Peters, V., Gault, B., Geuser, F.D., Deschamps, A., and Cairney, J.M.: Microstructural evolution during ageing of Al–Cu–Li–X alloys. Acta Mater. 66, 199 (2014).
10.Chen, B., Guo, M.F., Zheng, J.X., Zhang, K.Y., Fan, Y., Zhou, L.Y., Li, X.L., and Lu, C.: The effect of thermal exposure on the microstructures and mechanical properties of 2198 Al–Li alloy. Adv. Eng. Mater. 18, 1225 (2016).
11.Decreus, B., Deschamps, A., Geuser, F.D., Donnadieu, P., Sigli, C., and Weyland, M.: The influence of Cu/Li ratio on precipitation in Al–Cu–Li–x alloys. Acta Mater. 61, 2207 (2013).
12.Germer, J.J., Zein, N.N., Metwally, M.A., Hoskin, T.L., Harmsen, W.S., Smith, T.F., and Patel, R.: The influence of precipitation on plastic deformation of Al–Cu–Li alloys. Acta Mater. 61, 4010 (2013).
13.Wang, S.C. and Starink, M.J.: Precipitates and intermetallic phases in precipitation hardening Al–Cu–Mg–(Li) based alloys. Int. Mater. Rev. 50, 193 (2005).
14.Zhang, S.F., Zeng, W.D., Yang, W.H., Shi, C.L., and Wang, H.J.: Ageing response of a Al–Cu–Li 2198 alloy. Mater. Des. 63, 368 (2014).
15.Birbilis, N. and Buchheit, R.G.: Electrochemical characteristics of intermetallic phases in aluminum alloys—An experimental survey and discussion. J. Electrochem. Soc. 152, 467 (2005).
16.Li, J.F., Zheng, Z.Q., Li, S.C., Chen, W.J., Ren, W.D., and Zhao, X.S.: Simulation study on function mechanism of some precipitates in localized corrosion of Al alloys. Corros. Sci. 49, 2436 (2007).
17.Yu-Xuan, D.U., Zhang, X.M., Ling-Ying, Y.E., and Liu, S.D.: Evolution of grain structure in AA2195 Al–Li alloy plate during recrystallization. Trans. Nonferrous Metals Soc. 16, 321 (2006).
18.Hong-Ying, L.I., Yi, T., Zeng, Z.D., and Feng, Z.: Exfoliation corrosion of T6- and T8-aged AlxCuyLiz alloy. Trans. Nonferrous Metals Soc. 18, 778 (2008).
19.Proton, V., Alexis, J., Andrieu, E., Delfosse, J., Deschamps, A., Geuser, F.D., Lafont, M.C., and Blanc, C.: The influence of artificial ageing on the corrosion behaviour of a 2050 aluminium–copper–lithium alloy. Corros. Sci. 80, 494 (2014).
20.Wang, X.H., Wang, J.H., Yue, X., and Gao, Y.: Effect of aging treatment on the exfoliation corrosion and stress corrosion cracking behaviors of 2195 Al–Li alloy. Mater. Des. 67, 596 (2015).
21.Zhang, X., Zhou, X., Hashimoto, T., Liu, B., Luo, C., Sun, Z., Tang, Z., Lu, F. and Ma, Y.: Corrosion Behaviour of 2A97-T6 Al-Cu-Li alloy: the Influence of Non-uniform Precipitation. Corros. Sci. 132, 1 (2018).
22.Inoue, H., Sugahara, K., Yamamoto, A., and Tsubakino, H.: Corrosion rate of magnesium and its alloys in buffered chloride solutions. Corros. Sci. 44, 603 (2002).
23.Mathaudhu, S.N., Luo, A.A., Neelameggham, N.R., Nyberg, E.A., and Sillekens, W.H.: An Hydrogen Evolution Method for the Estimation of the Corrosion Rate of Magnesium Alloys (John Wiley & Sons, Inc., New Jersey, US, 2001); p. 255.
24.Ahmadi, S., Arabi, H., and Shokuhfar, A.: Formation mechanisms of precipitates in an Al–Cu–Li–Zr alloy and their effects on strength and electrical resistance of the alloy. J. Alloys Compd. 484, 90 (2009).
25.Chen, Z., Zhao, K., and Fan, L.: Combinative hardening effects of precipitation in a commercial aged Al–Cu–Li–X alloy. Mater. Sci. Eng., A. 588, 59 (2013).
26.Huang, J.C. and Ardell, A.J.: Crystal structure and stability of, precipitates in aged Al–Li–Cu alloys. Mater. Sci. Technol. 3, 176 (1987).
27.Crozier, T.E. and Yamamoto, S.: Solubility of hydrogen in water, seawater, and NaCl solutions. J. Chem. Eng. Data 19, 242 (1974).
28.Moreto, J.A., Marino, C.E.B., Filho, W.W.B., Rocha, L.A., and Fernandes, J.C.S.: SVET, SKP and EIS study of the corrosion behaviour of high strength Al and Al–Li alloys used in aircraft fabrication. Corros. Sci. 84, 30 (2014).
29.Queiroz, F.M., Bugarin, A.F.S., Hammel, N.P., Capelossi, V.R., Terada, M., and Costa, I.: EIS behavior of anodized and primer coated AA2198–T851 compared to AA2024–T3 exposed to salt spray CASS test. Surf. Interface Anal. 48, 755 (2016).
30.Jin-feng, L., Wen-jing, C., Xu-shan, Z., Wen-da, R., and Zi-qiao, Z.: Corrosion behavior of 2195 and 1420 Al–Li alloys in neutral 3.5% NaCl solution under tensile stress. Trans. Nonferrous Metals Soc. 16, 1171 (2006).
31.Conde, A. and Damborenea, J.D.: Electrochemical modelling of exfoliation corrosion behaviour of 8090 alloy. Electrochim. Acta 43, 849 (1997).
32.Conde, A. and Damborenea, J.D.: Evaluation of exfoliation susceptibility by means of the electrochemical impedance spectroscopy. Corros. Sci. 42, 1363 (2000).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed