Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 353
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Albetran, H. O’Connor, B. H. and Low, I. M. 2016. Activation energies for phase transformations in electrospun titania nanofibers: comparing the influence of argon and air atmospheres. Applied Physics A, Vol. 122, Issue. 4,


    Chen, Wan Ping Xiong, Yao Li, Ye Sheng Cui, Ping Guo, Shi Shang Chen, Wei Tang, Zi Long Yan, Zijie and Zhang, Zhenyu 2016. Extraordinary room-temperature hydrogen sensing capabilities of porous bulk Pt–TiO2 nanocomposite ceramics. International Journal of Hydrogen Energy, Vol. 41, Issue. 4, p. 3307.


    Choi, Sunho Eom, Minyong Park, Chanhwi Son, Seunghyeon Lee, Giho and Shin, Dongwook 2016. Effect of Li2SO4 on the properties of Li2S–P2S5 glass-ceramic solid electrolytes. Ceramics International, Vol. 42, Issue. 6, p. 6738.


    Dong, Junzhe Liu, Zhuofeng Dong, Junye Ariyanti, Dessy Niu, Zhenjiang Huang, Saifang Zhang, Weijun and Gao, Wei 2016. Self-organized ZnO nanorods prepared by anodization of zinc in NaOH electrolyte. RSC Adv., Vol. 6, Issue. 77, p. 72968.


    Elsanousi, Ammar Ouerghi, Oussama and Xue, Yanming 2016. Anodic TiO2 Nanotube Arrays as Fixed Photocatalyst. Journal of Environmental Science and Technology, Vol. 9, Issue. 2, p. 220.


    Eskandarloo, Hamed Hashempour, Mazdak Vicenzo, Antonello Franz, Silvia Badiei, Alireza Behnajady, Mohammad A. and Bestetti, Massimiliano 2016. High-temperature stable anatase-type TiO2 nanotube arrays: A study of the structure–activity relationship. Applied Catalysis B: Environmental, Vol. 185, p. 119.


    Fernandes, Jesum A. Khan, Sherdil Baum, Fabio Kohlrausch, Emerson C. Lucena dos Santos, José Augusto Baptista, Daniel L. Teixeira, Sergio R. Dupont, Jairton and Santos, Marcos J. Leite 2016. Synergizing nanocomposites of CdSe/TiO2nanotubes for improved photoelectrochemical activity via thermal treatment. Dalton Trans., Vol. 45, Issue. 24, p. 9925.


    Ge, Ming-Zheng Cao, Chun-Yan Huang, Jian-Ying Li, Shu-Hui Zhang, Song-Nan Deng, Shu Li, Qing-Song Zhang, Ke-Qin and Lai, Yue-Kun 2016. Synthesis, modification, and photo/photoelectrocatalytic degradation applications of TiO2 nanotube arrays: a review. Nanotechnology Reviews, Vol. 5, Issue. 1,


    José Martín de Vidales, María Mais, Laura Sáez, Cristina Cañizares, Pablo Walsh, Frank C. Rodrigo, Manuel A. Rodrigues, Christiane de Arruda and Ponce de León, Carlos 2016. Photoelectrocatalytic Oxidation of Methyl Orange on a TiO2Nanotubular Anode Using a Flow Cell. Chemical Engineering & Technology, Vol. 39, Issue. 1, p. 135.


    Junkar, Ita Kulkarni, Mukta Drašler, Barbara Rugelj, Neža Mazare, Anca Flašker, Ajda Drobne, Damjana Humpolíček, Petr Resnik, Matic Schmuki, Patrik Mozetič, Miran and Iglič, Aleš 2016. Influence of various sterilization procedures on TiO2 nanotubes used for biomedical devices. Bioelectrochemistry, Vol. 109, p. 79.


    Lee, Kangpyung Ku, Haemin and Pak, Daewon 2016. OH radical generation in a photocatalytic reactor using TiO2 nanotube plates. Chemosphere, Vol. 149, p. 114.


    Manurung, Robeth Viktoria Fu, Pei-Wen Chu, Yeh-Shiu Lo, Chun-Min and Chattopadhyay, Surojit 2016. Videography supported adhesion, and proliferation behavior of MG-63 osteoblastic cells on 2.5D titania nanotube matrices. Journal of Biomedical Materials Research Part A, Vol. 104, Issue. 4, p. 842.


    Mollavali, Majid Falamaki, Cavus and Rohani, Sohrab 2016. High performance NiS-nanoparticles sensitized TiO2 nanotube arrays for water reduction. International Journal of Hydrogen Energy, Vol. 41, Issue. 14, p. 5887.


    Moon, Jongyun Hedman, Hannu-Pekka Kemell, Marianna Tuominen, Aulis and Punkkinen, Risto 2016. Hydrogen sensor of Pd-decorated tubular TiO2 layer prepared by anodization with patterned electrodes on SiO2/Si substrate. Sensors and Actuators B: Chemical, Vol. 222, p. 190.


    Ortiz, Gregorio Lavela, Pedro Alcántara, Ricardo and Tirado, José 2016. Electrochemical Nanofabrication.


    Qadir, Muhammad Bilal Li, Yuewen Sahito, Iftikhar Ali Arbab, Alvira Ayoub Sun, Kyung Chul Mengal, Naveed Memon, Anam Ali and Jeong, Sung Hoon 2016. Highly Functional TNTs with Superb Photocatalytic, Optical, and Electronic Performance Achieving Record PV Efficiency of 10.1% for 1D-Based DSSCs. Small,


    Qiao, Liang and Swihart, Mark T. 2016. Solution-phase synthesis of transition metal oxide nanocrystals: Morphologies, formulae, and mechanisms. Advances in Colloid and Interface Science,


    Radtke, A. Piszczek, P. Topolski, A. Lewandowska, Ż. Talik, E. Andersen, I. Hald Nielsen, L. Pleth Heikkilä, M. and Leskelä, M. 2016. The structure and the photocatalytic activity of titania based nanotube and nanofiber coatings. Applied Surface Science, Vol. 368, p. 165.


    Rambabu, Y. Jaiswal, Manu and Roy, Somnath C. 2016. Effect of annealing temperature on the phase transition, structural stability and photo-electrochemical performance of TiO2 multi-leg nanotubes. Catalysis Today,


    Serikov, T M Ibrayev, N Kh and Smagulov, Zh 2016. Surface and sorption properties of TIO2nanotubes, synthesized by electrochemical anodization. IOP Conference Series: Materials Science and Engineering, Vol. 110, p. 012066.


    ×

Crystallization and high-temperature structural stability of titanium oxide nanotube arrays

  • Oomman K. Varghese (a1), Dawei Gong (a2), Maggie Paulose (a2), Craig A. Grimes (a2) and Elizabeth C. Dickey (a1)
  • DOI: http://dx.doi.org/10.1557/JMR.2003.0022
  • Published online: 01 January 2011
Abstract

The stability of titanium oxide nanotube arrays at elevated temperatures was studied in dry oxygen as well as dry and humid argon environments. The tubes crystallized in the anatase phase at a temperature of about 280 °C irrespective of the ambient. Anatase crystallites formed inside the tube walls and transformed completely to rutile at about 620 °C in dry environments and 570 °C in humid argon. No discernible changes in the dimensions of the tubes were found when the heat treatment was performed in oxygen. However, variations of 10% and 20% in average inner diameter and wall thickness, respectively, were observed when annealing in a dry argon atmosphere at 580 °C for 3 h. Pore shrinkage was even more pronounced in humid argon environments. In all cases the nanotube architecture was found to be stable up to approximately 580 °C, above which oxidation and grain growth in the titanium support disrupted the overlying nanotube array.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: ecdlo@psu.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1.D. Grosso and G.J. de A.A.S. Illia , Adv. Mater. 13, 1085 (2001).

3.D.M. Antonelli , Microporous Mesoporous Mater. 30, 315 (1999).

4.A. Mozalev , S. Magaino , and H. Imai , Electrochim. Acta 46, 2825 (2001).

5.W. Deng , P. Bodart , M. Pruski , and B.H. Shanks , Microporous Mesoporous Mater. 52, 169 (2002).

7.V.I. Parvulescu , H. Bonnemann , V. Parvulescu , U. Endruschat , A. Rufinska , Ch.W. Lehmann , B. Tesche , and G. Poncelet , Appl. Catal., A 214, 273 (2001).

8.M.S. Wong , D.M. Antonelli , and J.Y. Ying , Nanostruct. Mater. 9, 165 (1997).

9.T. Fujii , T. Yano , K. Nakamura , and O. Miyawaki , J. Membr. Sci. 187, 171 (2001).

10.D. Zhao , J. Feng , Q. Huo , N. Melosh , G.H. Fredrickson , B.F. Chmelka , and G.D. Stucky , Science 279, 548 (1998).

11.M. Harada and M. Adachi , Adv. Mater. 12, 839 (2000).

12.J. Zou , L. Pu , X. Bao , and D. Feng , Appl. Phys. Lett. 80, 1079 (2002).

13.L. Pu , X. Bao , J. Zou , and D. Feng , Angew. Chem. 113, 1538 (2001).

16.A. Michailowski , D. Aimaawlawi , G. Cheng , and M. Moskovits , Chem. Phys. Lett. 349, 1 (2001).

17.P. Hoyer , Langmuir 12, 1411 (1996).

18.T. Kasuga , M. Hiramatsu , A. Hoson , T. Sekino , and K. Niihara , Langmuir 14, 3160 (1998).

22.H. Imai , Y. Takei , K. Shimizu , M. Matsuda , and H. Hirashima , J. Mater. Chem. 9, 2971 (1999).

23.T. Kasuga , M. Hiramatsu , A. Hoson , T. Sekino , and K. Niihara , Adv. Mater. 11, 1307 (1999).

24.G.H. Du , Q. Chen , R.C. Che , Z.Y. Yuan , L-M. Peng , Appl. Phys. Lett. 79, 3702 (2001).

25.Q. Fan , B. McQuillin , D.D.C. Bradley , S. Whitelegg , A.B. Seddon , Chem. Phys. Lett. 347, 325 (2001).

26.N-G. Park , J. van de Lagemaat , and A.J. Frank , J. Phys. Chem. B 104, 8989 (2000).

28.Z. Ma , Y. Yue , X. Deng , and Z. Gao , J. Mol. Catal., A 178, 97 (2002).

29.X-S. Ye , Z-G. Xiao , D-S. Lin , S-Y. Huang , and Y-H. Man , Mater. Sci. and Eng., B 74, 133 (2000).

30.L. Gao , Q. Li , Z. Song , and J. Wang , Sens. Actuators, B 71, 179 (2000).

31.A. Rothschile , F. Edelman , Y. Komem , and F. Cosandey , Sens. Actuators, B 67, 282 (2000).

33.K-N.P. Kumar , K. Keizer , A.J. Burggraaf , T. Okubo , and H. Nagamoto , J. Mater. Chem. 3, 1151 (1993).

34.Y. Ohya , H. Saiki , T. Tanaka , and Y. Takahashi , J. Am. Ceram. Soc. 79, 825 (1996).

36.J.A. Varela , O.J. Whittemore , and E. Longo , Ceram. Int. 16, 177 (1990).

37.O.J. Whittemore and J.J. Sipe , Powder Technol. 9, 159 (1974).

38.K-N.P. Kumar , K. Keizer , A.J. Burggraaf , T. Okubo , H. Nagamoto , and S. Morooka , Nature 358, 48 (1992).

40.X-Z. Ding and X-H. Liu , J. Mater. Sci. Lett. 15, 1392 (1996).

42.F.C. Gennari and D.M. Pasquevich , J. Mater. Sci. 33, 1571 (1998).

43.Y. Iida and S. Ozaki , J. Am. Ceram. Soc. 44, 120 (1961).

45.H. Zhang and J.F. Banfield , J. Phys. Chem. B 104, 3481 (2000).

47.R.D. Shannon , J. Appl. Phys. 35, 3414 (1965).

48.F. Gruy and M. Pijolat , J. Am. Ceram. Soc. 75, 657 (1992).

49.J-L. Hebrard , P. Nortier , M. Pijolat , and M. Saustelle , J. Am. Ceram. Soc. 73, 79 (1990).

50.H. Imai , H. Morimoto , A. Tominaga , and H. Hirashima , J. Sol-Gel Sci. Technol. 10, 45 (1997).

52.N.P. Bansal , R.H. Doremus , A.J. Bruce , and C.T. Moynihan , J. Am. Ceram. Soc. 66 (1983) 233.

53.H. Zhang and J.F. Banfield , J. Mater. Res. 15, 437 (2000).

55.K-N.P. Kumar , J. Tranto , B.N. Nair , J. Kumar , J.W. Høj , and J.E. Engell , Mater. Res. Bull. 29, 551 (1994).

57.J.A. Moulijn , A.E. van Diepen , and F. Kapteijn , Appl. Catal., A 212, 3 (2001).

61.R.D. Shannon and J.A. Pask , J. Am. Ceram. Soc. 48, 391 (1965).

62.P.I. Gouma , P.K. Dutta , and M.J. Mills , Nanostruct. Mater. 11, 1231 (1999).

63.P.I. Gouma and M.J. Mills , J. Am. Ceram. Soc. 84, 619 (2001).

64.H. Zhang and J.F. Banfield , J. Mater. Chem. 8, 2073 (1998).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×