Skip to main content
    • Aa
    • Aa

Distributions of kinetic pathways in strain relaxation of heteroepitaxial films

  • Dustin Andersen (a1) and Robert Hull (a1)

The kinetic relaxation pathways for strained heteroepitaxial films are mapped using a process simulator that integrates experimental and model descriptions of the energetic and kinetic parameters that define the nucleation, propagation, and interaction of strain relieving dislocations. This paper focuses on Ge x Si1−x /Si(100), but the methodologies described should be extendible to other systems. The kinetic pathways for strain evolution are plotted for film growth as functions of the primary kinetic parameters: growth temperature, growth rate, and initial lattice mismatch, generating relaxation surfaces for parameter pairs. Sensitivity analyses are presented of how deviations from mean parameters disperse the resultant relaxation surfaces. Finally, multi-parameter “fingerprinting” of the dislocation array is shown to illustrate how fundamental kinetic mechanisms—particularly dislocation nucleation mechanisms—define the final dislocation array. The overarching goal is to establish a robust framework for predicting, interrogating, and optimizing strain relaxation pathways and underlying mechanisms, for misfit dislocations in strained heteroepitaxial films.

Corresponding author
a) Address all correspondence to this author. e-mail:
Hide All

Contributing Editor: Artur Braun

This paper has been selected as an Invited Feature Paper.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 2
Total number of PDF views: 10 *
Loading metrics...

Abstract views

Total abstract views: 37 *
Loading metrics...

* Views captured on Cambridge Core between 11th October 2017 - 19th October 2017. This data will be updated every 24 hours.