Skip to main content
×
Home
    • Aa
    • Aa

Effects of mechanical properties on the contact profile in Berkovich nanoindentation of elastoplastic materials

  • Jiangting Wang (a1), Peter D. Hodgson (a1) and Chunhui Yang (a2)
Abstract
Abstract

Pile-up or sink-in is always a concern in a nanoindentation test because it gives rise to errors in the estimation of the projected contact area when it is theoretically analyzed with the classic Oliver–Pharr method. In this study, a three-dimensional finite element model is developed to simulate nanoindentation with a perfect Berkovich tip. The variation of the contact profile with respect to the work-hardening rate n and the ratio of yield stress to elastic modulus σy/E has been studied for a wide range of elastoplastic materials. The numerical results show that a low σy/E not only facilitates the pile-up for materials with little or no work-hardening but also enhances the sink-in for materials with a high work-hardening rate. It is attributed to the lateral-flow dominated plastic deformation in low work-hardening materials and the normal-flow dominated plastic deformation in high work-hardening materials, respectively. Because of the large sink-in, for the materials with high n and low σy/E, significant errors in the calculation of the projected contact area can be generated by using the classic Oliver–Pharr method.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: chunhui.yang@deakin.edu.au
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: