Skip to main content
    • Aa
    • Aa

Enthalpy of formation of cubic yttria-stabilized hafnia

  • Theresa A. Lee (a1) and Alexandra Navrotsky (a1)

The enthalpy of formation of cubic yttria-stabilized hafnia from monoclinic hafnia and C-type yttria was measured by oxide melt solution calorimetry. The enthalpies of formation fit a function independent of temperature and quadratic in composition. The enthalpies of transition from m-HfO2 and C-type YO1.5, to the cubic fluorite phase are 32.5 ± 1.7 kJ/mol and 38.0 ± 13.4 kJ/mol, respectively. The interaction parameter in the fluorite phase is strongly negative, -155.2 ± 10.2 kJ/mol, suggesting even stronger short range order than in ZrO2–YO1.5. Regular solution theory or any other model assuming random mixing on the cation and /or anion sublattice is not physically reasonable. A more complex solution model should be developed to be consistent with the new calorimetric data and observed phase relations.

Corresponding author
b)Address all correspondence to this author.e-mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1J. Wang , H.P. Li and R. Stevens : Hafnia and hafnia-toughened ceramics. J. Mater. Sci. 27, 5397 (1992).

3K.E. Sickafus , J.A. Valdez , J.R. Williams , R.W. Grimes and H.T. Hawkins : Radiation induced amorphization resistance in A2O3–BO2 oxides. Nucl. Instrum. Meth. B 191, 549 (2002).

5A.S. Nowick and D.S. Park in Superionic Conductors , edited by G.D Mahan and W.L. Roth (Plenum Press, New York, 1976)

6V.V. Kharton , A.A. Yaremchenko , E.N. Naumovich and F.M.B. Marques : Research on the electrochemistry of oxygen ion conductors in the former Soviet Union III. HfO2−, CeO2− and ThO2−based oxides. J. Solid State Electrochem. 4, 243 (2000).

7M.F. Trubelja and V.S. Stubican : Ionic conductivity of the fluorite-type hafnia-R2O3 solid solutions. J. Am. Ceram. Soc. 74, 2489 (1991).

8J.D. Schieltz , J.W. Patterson and D.R. Wilder : Electrolytic behavior of yttria-stabilized hafnia. J. Electrochem. Soc. 118, 1257 (1971).

9T.H. Etsell and S.N. Flengas : Electrical properties of solid oxide electrolytes. Chem. Rev. 70, 339 (1970).

11A. Navrotsky : Progress and New Directions in High Temperature Calorimetry Revisited. Phys. Chem. Miner. 24, 222 (1997).

13J.M. McHale , G.R. Kowach , A. Navrotsky and F.J. DiSalvo : Thermochemistry of Metal Nitrides in the Ca/Zn/N System. Chem. Eur. J. 2, 1514 (1996).

14D.W. Stacy and D.R. Wilder : J. Am. Ceram. Soc. 58, 285 (1975).

18J.E. Lowther , J.K. Dewhurst , J.M. Leger and J. Haines : Relative stability of ZrO2 and HfO2 structural phases. Phys. Rev. B 60, 14485 (1999).

19A.S. Foster , F. Lopez Gejo , A.L. Shluger and R.M. Nieminen : Mechanism of interstitial oxygen diffusion in hafnia. Phys. Rev. B 65, 174117 (2002).

22C.R. Stanek and R.W. Grimes : Prediction of rare earth A2Hf2O7 pyrochlore phases. J. Am. Ceram. Soc. 85, 2139 (2002).

24M. Duclot , I. Vicat and C.H. Deportes : Mise en evidence et etude de la phase ordonnée Y2Hf7O17 dans le système HfO2–Y2O3. J. Solid Sate Chem. 2, 236 (1970).

26J.P. Goff , W. Hays , S. Hull , M.T. Hutchings and K.N. Clauseen : Defect structure of yttria-stabilized zirconia and its influence on the ionic conductivity at elevated temperatures. Phys. Rev. B 59, 14202 (1999).

27D. Steele and B.E.F. Fender : The structure of cubic ZrO2:YO1.5 solid solutions by neutron scattering. J. Phys. C: Solid State Phys. 7, 1 (1974).

28I.R. Gibson and J.T.S. Irvine : Study of Order/Disorder Transition in Yttria-stabilised Zironia by Neutron Diffraction. J. Mater. Chem. 6, 895 (1996).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *