Skip to main content Accessibility help
×
Home

Formation and control of nanoporous Ag through electrochemical dealloying of the melt-spun Cu-Ag-Ce alloys

  • Guijing Li (a1), Xiaoping Song (a1), Feifei Lu (a1), Zhanbo Sun (a1), Zhimao Yang (a1), Shengchun Yang (a1) and Bingjun Ding (a1)...

Abstract

In this work, the ultrafine nanoporous Ag ribbons were achieved through addition of 2 at.%–6 at.% Ce into the melt-spun Cu-Ag alloys and applying different electrochemical dealloying potentials. The dendritic morphology of the ligaments in the dealloyed Cu80Ag20 alloy varied to be equiaxial due to the addition of Ce, and the pore size reduced from 200 nm to less than 60 nm. The nanoporous Ag with an average pore size of ∼15 nm was obtained from the Cu74Ag20Ce6 alloy. The pore and ligament sizes of the nanoporous Ag prepared from the Cu76Ag20Ce4 alloy exhibited an increasing tendency with the increase of applied potentials, while the dealloyed Cu78Ag20Ce2 had an opposite variation. Moreover, the addition of Ce into the Cu-Ag alloys also promoted the dealloying. Nanoporous Ag exhibited the stronger enhancement of the surface enhanced Raman scattering effects with the increase of Ce contents in the precursory alloys.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: szb@mail.xjtu.edu.cn

References

Hide All
1.Christensen, C.H. and Nørskov, J.K.: Green gold catalysis. Science 327, 278 (2010).
2.Ji, H., Frenzel, J., Qi, Z., Wang, X.G., Zhao, C.C., Zhang, Z.H., and Eggeler, G.: An ultrafine nanoporous bimetallic Ag-Pd alloy with superior catalytic activity. CrystEngComm 12, 4059 (2010).
3.Taguchi, A. and Schüth, F.: Ordered mesoporous materials in catalysis. Microporous Mesoporous Mater. 77, 1 (2005).
4.Wittstock, A., Zielasek, V., Biener, J., Friend, C.M., and Bäumer, M.: Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science 327, 319 (2010).
5.Xu, C.X., Xu, X.H., Su, J.X., and Ding, Y.: Research on unsupported nanoporous gold catalyst for CO oxidation. J. Catal. 252, 243 (2007).
6.Chen, X. and Qiao, Y.: Science and prospects of using nanoporous materials for energy absorption. Mater. Res. Soc. Symp. Proc. 1041, 02 (2008).
7.Dixon, M.C., Daniel, T.A., Hieda, M., Smilgies, D.M., Chan, M.H.W., and Allara, D.L.: Preparation, structure, and optical properties of nanoporous gold thin films. Langmuir 23, 2414 (2007).
8.Jiao, Y., Ryckman, J.D., Ciesielski, P.N., Escobar, C.A., Jennings, G.K., and Weiss, S.M.: Patterned nanoporous gold as an effective SERS template. Nanotechnology 22, 295302 (2011).
9.Kim, H., Kim, Y., Joo, J.B., Ko, J.W., and Yi, J.: Preparation of coral-like porous gold for metal ion detection. Microporous Mesoporous Mater. 122, 283 (2009).
10.Jeon, G., Yang, S.Y., Byun, J., and Kim, J.K.: Electrically actuatable smart nanoporous membrane for pulsatile drug release. Nano Lett. 11, 1284 (2011).
11.Luechinger, N.A., Walt, S.G., and Stark, W.J.: Printable nanoporous silver membranes. Chem. Mater. 22, 4980 (2010).
12.Hodge, A.M., Doucette, R.T., Biener, M.M., Biener, J., Cervantes, O., and Hamza, A.V.: Ag effects on the elastic modulus values of nanoporous Au foams. J. Mater. Res. 24, 1600 (2009).
13.Schrinner, M., Ballauff, M., Talmon, Y., Kauffmann, Y., Thun, J., Möller, M., and Breu, J.: Single nanocrystals of platinum prepared by Partial dissolution of Au-Pt nanoalloys. Science 323, 617 (2009).
14.Zhang, Z.H., Wang, Y., Qi, Z., Somsen, C., Wang, X.G., and Zhao, C.C.: Fabrication and characterization of nanoporous gold composites through chemical dealloying of two phase Al-Au alloys. J. Mater. Chem. 19, 6042 (2009).
15.Hakamada, M. and Mabuchi, M.: Thermal coarsening of nanoporous gold: Melting or recrystallization. J. Mater. Res. 24, 301 (2009).
16.Pugh, D.V., Dursun, A., and Corcoran, S.G.: Formation of nanoporous platinum by selective dissolution of Cu from Cu0.75Pt0.25. J. Mater. Res. 18, 216 (2003).
17.Hakamada, M. and Mabuchi, M.: Fabrication of nanoporous palladium by dealloying and its thermal coarsening. J. Alloys Compd. 479, 326 (2009).
18.Erlebacher, J., Aziz, M.J., Karma, A., Dimitrov, N., and Sieradzki, K.: Evolution of nanoporosity in dealloying. Nature 410, 451 (2001).
19.Xu, C.X., Li, Y.Y., Tian, F., and Ding, Y.: Dealloying to nanoporous silver and its implementation as a template material for construction of nanotubular mesoporous bimetallic nanostructures. ChemPhysChem 11, 3320 (2010).
20.Zhang, Z.H., Wang, Y., Qi, Z., Zhang, W.H., Qin, J.Y., and Frenzel, J.: Generalized fabrication of nanoporous metals (Au, Pd, Pt, Ag, and Cu) through chemical dealloying. J. Phys. Chem. C 113, 12629 (2009).
21.Morrish, R. and Muscat, A.J.: Nanoporous silver with controllable optical properties formed by chemical dealloying in supercritical CO2. Chem. Mater. 21, 3865 (2009).
22.Wang, X.G., Qi, Z., Zhao, C.C., Wang, W.M., and Zhang, Z.H.: Influence of alloy composition and dealloying solution on the formation and microstructure of monolithic nanoporous silver through chemical dealloying of Al-Ag alloys. J. Phys. Chem. C 113, 13139 (2009).
23.Li, Z.Q., Li, B.Q., Qin, Z.X., and Lu, X.: Fabrication of porous Ag by dealloying of Ag-Zn alloys in H2SO4 solution. J. Mater. Sci. 45, 6494 (2010).
24.Ding, Y. and Chen, M.: Nanoporous metals for catalytic and optical applications. MRS Bull. 34, 569 (2009).
25.Chen, L., Yu, J., Fujita, T., and Chen, M.: Nanoporous copper with Tunable Nanoporosity for SERS applications. Adv. Funct. Mater. 19, 1221 (2009).
26.Yeh, F.H., Tai, C.C., Huang, J.F., and Sun, I.W.: Formation of porous silver by electrochemical alloying/dealloying in a water-Insensitive zinc chloride-1-ethyl-3-methyl imidazolium chloride ionic liquid. J. Phys. Chem. B 110, 5215 (2006).
27.Qian, L.H. and Chen, M.W.: Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation. Appl. Phys. Lett. 91, 083105 (2007).
28.Sieradzki, K., Corderman, R.R., Shukla, K., and Newman, R.C.: Computer simulations of corrosion: Selective dissolution of binary alloys. Philos. Mag. A 59, 713 (1989).
29.Snyder, J., Asanithi, P., Dalton, A.B., and Erlebacher, J.: Stabilized nanoporous metals by dealloying ternary alloy precursors. Adv. Mater. 20, 4883 (2008).
30.Ji, H., Wang, X., Zhao, C., Zhang, C., Xu, J., and Zhang, Z.: Formation, control and functionalization of nanoporous silver through changing dealloying media and elemental doping. CrystEngComm 13, 2617 (2011).
31.Li, G.J., Song, X.P., Sun, Z.B., Yang, S.C., Ding, B.J., Yang, S., Yang, Z.M., and Wang, F.: Nanoporous Ag prepared from the melt-spun Cu-Ag alloys. Solid State Sci. 13, 1379 (2011).
32.Liu, J.B., Meng, L., and Zhang, L.: Rare earth microalloying in as-cast and homogenized alloys Cu-6 wt.% Ag and Cu-24 wt.% Ag. J. Alloys Compd. 425, 185 (2006).
33.Inoue, A., Park, J., and Masumoto, T.: Formation of amorphous Cu-Ag-Ce alloys by rapid solidification and their thermal and mechanical properties. Mater. Trans., JIM 35, 227(1994).
34.Sugawara, H. and Ebiko, H.: Dezincification of brass. Corros. Sci. 11, 513 (1967).
35.Snyder, J., Livi, K., and Erlebacher, J.: Dealloying silver/gold alloys in neutral silver nitrate solution: Porosity evolution, surface composition, and surface oxides. J. Electrochem. Soc. 155, C464 (2008).
36.Hakamada, M. and Mabuchi, M.: Nanoporous gold prism microassembly through a self-organizing route. Nano Lett. 6, 882 (2006).
37.Dursun, A., Pugh, D.V., and Corcoran, S.G.: Dealloying of Ag-Au alloys in halide-containing electrolytes. J. Electrochem. Soc. 150, B355 (2003).
38.Sun, Y.G., Mayers, B., Herricks, T., and Xia, Y.: Polyol synthesis of uniform silver Nanowires: A plausible growth mechanism and the supporting evidence. Nano Lett. 3, 955 (2003).
39.Xia, Y.N., Xiong, Y.J., Lim, B., and Skrabalak, S.E.: Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem. Int. Ed. 48, 60 (2009).
40.Lu, H.B., Li, Y., and Wang, F.H.: Synthesis of porous copper from nanocrystalline two-phase Cu-Zr film by dealloying. Scr. Mater. 56, 165 (2007).
41.Dursun, A., Pugh, D.V., and Corcoran, S.G.: Probing the dealloying critical potential. J. Electrochem. Soc. 152, B65 (2005).
42.Zhang, Q., Wang, X., Qi, Z., Wang, Y., and Zhang, Z.: A benign route to fabricate nanoporous gold through electrochemical dealloying of Al-Au alloys in a neutral solution. Electrochim. Acta 54, 6190 (2009).
43.Zhang, Z.H., Wang, Y., Wang, Y.Z., Wang, X.G., Qi, Z., Ji, H., and Zhao, C.C.: Formation of ultrafine nanoporous gold related to surface diffusion of gold adatoms during dealloying of Al2Au in an alkaline solution. Scr. Mater. 62, 137 (2010).
44.Tiwari, V.S., Oleg, T., Darbha, G.K., Hardy, W., Singh, J.P., and Ray, P.C.: Nonresonance SERS effects of silver colloids with different shapes. Chem. Phys. Lett. 446, 77 (2007).
45.Michaels, A.M., Jiang, J., and Brus, L.: Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single Rhodamine 6G molecules. J. Phys. Chem. B 104, 11965 (2000).
46.Li, W., Camargo, P.H.C., Lu, X., and Xia, Y.: Dimers of silver nanospheres: Facile synthesis and their use as hot spots for surface-enhanced Raman scattering. Nano Lett. 9, 485 (2009).
47.Nie, S. and Emory, S.R.: Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102 (1997).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed