Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-29T08:06:09.396Z Has data issue: false hasContentIssue false

Hydrothermal synthesis of KNbO3 and NaNbO3 powders

Published online by Cambridge University Press:  31 January 2011

Gregory K.L. Goh
Affiliation:
Materials Department and Materials Research Laboratory, University of California, Santa Barbara, California 93106
Fred F. Lange
Affiliation:
Materials Department and Materials Research Laboratory, University of California, Santa Barbara, California 93106
Sossina M. Haile
Affiliation:
Materials Science Department 138–78, California Institute of Technology, 1200 California Boulevard, Pasadena, California 91125
Carlos G. Levi
Affiliation:
Materials Department and Materials Research Laboratory, University of California, Santa Barbara, California 93106
Get access

Abstract

Orthorhombic KNbO3 and NaNbO3 powders were hydrothermally synthesized in KOH and NaOH solutions (6.7–15 M) at 150 and 200 °C. An intermediate hexaniobate species formed first before eventually converting to the perovskite phase. For synthesis in KOH solutions, the stability of the intermediate hexaniobate ion increased with decreasing KOH concentrations and temperatures. This led to significant variations in the induction periods and accounted for the large disparity in the mass of recovered powder for different processing parameters. It is also believed that protons were incorporated in the lattice of the as-synthesized KNbO3 powders as water molecules and hydroxyl ions.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Gunter, P., Opt. Commun. 11, 285 (1974).CrossRefGoogle Scholar
Uematsu, Y., Jpn. J. Appl. Phys. 13, 1362 (1974).CrossRefGoogle Scholar
Gunter, P. and Micheron, F., Ferroelectrics 18, 27 (1978).CrossRefGoogle Scholar
Fluckiger, U., Arend, H., and Oswald, H.R., J. Am. Ceram. Soc. 56, 575 (1977).Google Scholar
Nazeri-Eshghi, A., Kuang, A.X., and Mackenzie, J.D., J. Mater. Sci. 25, 3333 (1990).CrossRefGoogle Scholar
Amini, M.M. and Sacks, M.D., J. Am. Ceram. Soc. 74, 53 (1991).CrossRefGoogle Scholar
Kim, M.J. and Matijevic, E., J. Mater. Res. 7, 912 (1992).CrossRefGoogle Scholar
Kormarneni, S., Roy, R., and Li, Q.H., Mater. Res. Bull. 27, 1393 (1992).CrossRefGoogle Scholar
Lu, C-H., Lo, S-Y., and Lin, H-C., Mater. Lett. 34, 172 (1998).CrossRefGoogle Scholar
Uchida, S., Inoue, Y., Fujishiro, Y., and Sato, T., J. Mater. Sci. 33, 5125 (1998).CrossRefGoogle Scholar
Wang, K., Helmersson, U., Olafsson, S., Rudner, S., Wernlund, L., and Gevorgian, S., Appl. Phys. Lett. 73, 927 (1998).CrossRefGoogle Scholar
Cho, C-R., Koh, J-H., Grishin, A., Abadei, S., and Gevorgian, S., Appl. Phys. Lett. 76(13), 1761 (2000).CrossRefGoogle Scholar
Schafer, H., Gruehn, R., and Schulte, F., Agnew. Chem. Int. Ed. 5, 40 (1966).CrossRefGoogle Scholar
Powder Diffraction File, Card No. 37–1486 (Joint Committe on Powder Diffraction Standards, Swarthmore, PA, 1992).Google Scholar
Powder Diffraction File, Card No. 27–1003 (Joint Committe on Powder Diffraction Standards, Swarthmore, PA, 1992).Google Scholar
Powder Diffraction File, Card No. 14–0370 (Joint Committe on Powder Diffraction Standards, Swarthmore, PA, 1992).Google Scholar
Powder Diffraction File, Card No. 33–1270 (Joint Committe on Powder Diffraction Standards, Swarthmore, PA, 1992).Google Scholar
Powder Diffraction File, Card No. 32–0822 (Joint Committe on Powder Diffraction Standards, Swarthmore, PA, 1992).Google Scholar
Wood, E.A., Acta Crystallogr. 4, 358 (1951).CrossRefGoogle Scholar
Zeng, H.C., Chong, T.C., Lim, L.C., Kumagai, H., Hirano, M., J. Cryst. Growth 160, 289 (1996).CrossRefGoogle Scholar
Goh, G.K.L., Levi, C.G., Choi, J.H., and Lange, F.F. (in press).Google Scholar
Tobias, R.S., Can. J. Chem. 43, 1222 (1965).CrossRefGoogle Scholar
Farrell, F.J., Maroni, V.A., and Spiro, T.G., Inorg. Chem. 8, 2638 (1969).CrossRefGoogle Scholar
Boyle, T.J., Alam, T.M., Dimos, D., Moore, G.J., Buchheit, C.D., Al-Shareef, H.N., Mechenbier, E.R., Bear, B.R., Ziller, J.W., Chem. Mater. 12, 3187 (1997).CrossRefGoogle Scholar
Gadsen, J.A., Infrared Spectra of Minerals and Related Inorganic Compouds (Butterworths, London, U.K., 1975), p. 16.Google Scholar
Augugliaro, V., Coluccia, S., Loddo, V., Marchese, L., Martra, G., Palamisano, L., and Schiavello, M., Appl. Catal. B 20, 15 (1999).CrossRefGoogle Scholar
Barnes, R. B., Gore, R. C., Liddel, U., and Williams, V. Z., Infrared Spectroscopy (Reinhold, New York, 1944), p. 19.Google Scholar
Brunner, E., Karge, H.G., and Pfeifer, H., Z. Phys. Chem. 176, 173 (1992).CrossRefGoogle Scholar
Filowitz, M., Ho, R.K.C., Klemperer, W.G., and Shum, W., Inorg. Chem. 18(1), 93 (1979).CrossRefGoogle Scholar
Lindqvist, I., Arkiv. Kemi. 5, 247 (1953).Google Scholar
Baker, L.C.W. and Glick, D.C., Chem. Rev. 98, 3 (1998).CrossRefGoogle Scholar
Jander, G. and Ertel, D., J. Inorg. Nucl. Chem. 14, 77 (1960).CrossRefGoogle Scholar
Jehng, J-M. and Wachs, I.E., Chem. Mater. 3, 100 (1991).CrossRefGoogle Scholar
Goiffon, A. and Spinner, B., Rev. Chim. Min. 11, 262 (1974).Google Scholar
Goiffon, A., Granger, R., Bockel, C., and Spinner, B., Rev. Chim. Min. 10, 487 (1973).Google Scholar
Griffith, W. P. and Wickins, T. D., J. Chem. Soc. A 1087 (1966).Google Scholar
NMR of Newly Accessible Nuclei, edited by Laszlo, P. (Academic Press, New York, 1983), Vol. 2, p. 395.Google Scholar
Lu, Y-J., Lalancette, R., and Beer, R.H., Inorg. Chem. 35, 2524 (1996).CrossRefGoogle Scholar
Lu, C-H. and Lo, S-Y., Ceram. Trans. 94, 397 (1999).Google Scholar
Chien, A.T., Xu, X., Kim, J.H., Speck, J.S., and Lange, F.F., J. Mater. Res. 14, 3330 (1999).CrossRefGoogle Scholar
Shi, E-W., Xia, C-T., Zhong, W-Z., Wang, B-G., and Feng, C-D., J. Am. Ceram. Soc. 80, 1567 (1997).CrossRefGoogle Scholar
Goh, G.K.L., Haile, S.M., Levi, C.G., Lange, F. F., J. Mater. Res. 17, 3168 (2002).CrossRefGoogle Scholar
Wada, S., Suzuki, T., and Noma, T., J. Ceram. Soc. Jpn. 104, 383 (1996).CrossRefGoogle Scholar
Hennings, D. and Schreinemacher, S., J. Eur. Ceram. Soc. 9, 41 (1992).CrossRefGoogle Scholar
Kreuer, K.D., Adams, St., Münch, W., Fuchs, A., Klock, U., and Maier, J., Solid State Ionics. 145, 295 (2001).CrossRefGoogle Scholar
Li, A-J. and Nussinov, R., Proteins. 32, 111 (1998).3.0.CO;2-H>CrossRefGoogle Scholar
Shannon, R.D. and Prewitt, C.T., Acta Crystall. B 25, 925 (1969).CrossRefGoogle Scholar