Skip to main content
×
Home
    • Aa
    • Aa

Length-dependent performances of sodium deoxycholate-dispersed single-walled carbon nanotube thin-film transistors

  • Rongmei Si (a1), Hong Wang (a1), Li Wei (a1), Yuan Chen (a1), Zhenfeng Wang (a2) and Jun Wei (a2)...
Abstract
Abstract

The material characteristics of single-walled carbon nanotubes (SWCNTs) influence the performance of SWCNT thin-film transistors (TFTs). In this study, a density gradient ultracentrifugation method was used to sort surfactant (sodium deoxycholate)-dispersed SWCNTs by length. SWCNTs of 150 ± 33 nm and 500 ± 91 nm long were fabricated into TFTs. The results show that the performance of SWCNT-TFTs is tube length dependent. TFTs fabricated using 500-nm long tubes have maximum on/off ratio around 105 with the mobility at ∼0.15 cm2/(V s), which is much higher than that of TFTs using 150-nm long tubes. Shorter tubes need higher tube density to form semiconducting paths, leading to lower on/off ratio and high contact resistance. Surfactant-wrapped SWCNTs will bundle into ropes of different size when tube density is high. It is critical to control tube length as well as surfactant residue content to build high performance SWCNT-TFTs.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: chenyuan@ntu.edu.sg
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

X.J. Zhou , J.Y. Park , S.M. Huang , J. Liu , and P.L. McEuen : Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 95(14), 146805 (2005).

H.J. Dai , A. Javey , E. Pop , D. Mann , W. Kim , and Y.R. Lu : Electrical transport properties and field effect transistors of carbon nanotubes. Nano 1(1), 1 (2006).

S. Banerjee , T. Hemraj-Benny , and S.S. Wong : Routes towards separating metallic and semiconducting nanotubes. J. Nanosci. Nanotechnol. 5(6), 841 (2005).

M.C. Hersam : Progress towards monodisperse single-walled carbon nanotubes. Nat. Nanotechnol. 3(7), 387 (2008).


S.B. Yang , B.S. Kong , D.H. Jung , Y.K. Baek , C.S. Han , S.K. Oh , and H.T. Jung : Recent advances in hybrids of carbon nanotube network films and nanomaterials for their potential applications as transparent conducting films. Nanoscale 3(4), 1361 (2011).

7.Q. Cao and J.A. Rogers : Ultrathin films of single-walled carbon nanotubes for electronics and sensors: A review of fundamental and applied aspects. Adv. Mater. 21(1), 29 (2009).

M.D. Lay , J.P. Novak , and E.S. Snow : Simple route to large-scale ordered arrays of liquid-deposited carbon nanotubes. Nano Lett. 4(4), 603 (2004).

Y. Asada , F. Nihey , S. Ohmori , H. Shinohara , and T. Saito : Diameter-dependent performance of single-walled carbon nanotube thin-film transistors. Adv. Mater. 23(40), 4631 (2011).

Y. Asada , Y. Miyata , Y. Ohno , R. Kitaura , T. Sugai , T. Mizutani , and H. Shinohara : High-performance thin-film transistors with DNA-assisted solution processing of isolated single-walled carbon nanotubes. Adv. Mater. 22(24), 2698 (2010).

C.W. Lee , C.H. Weng , L. Wei , Y. Chen , M.B. Chan-Park , C.H. Tsai , K.C. Leou , C.H.P. Poa , J.L. Wang , and L.J. Li : Toward high-performance solution-processed carbon nanotube network transistors by removing nanotube bundles. J. Phys. Chem. C 112(32), 12089 (2008).

E.S. Snow , J.P. Novak , P.M. Campbell , and D. Park : Random networks of carbon nanotubes as an electronic material. Appl. Phys. Lett. 82(13), 2145 (2003).

L. Hu , D.S. Hecht , and G. Gruner : Percolation in transparent and conducting carbon nanotube networks. Nano Lett. 4(12), 2513 (2004).

M. Ishida and F. Nihey : Estimating the yield and characteristics of random network carbon nanotube transistors. Appl. Phys. Lett. 92(16), 163507 (2008).

C. Kocabas , N. Pimparkar , O. Yesilyurt , S.J. Kang , M.A. Alam , and J.A. Rogers : Experimental and theoretical studies of transport through large scale, partially aligned arrays of single-walled carbon nanotubes in thin film type transistors. Nano Lett. 7(5), 1195 (2007).

N. Pimparkar , C. Kocabas , S.J. Kang , J. Rogers , and M.A. Alam : Limits of performance gain of aligned CNT over randomized network: Theoretical predictions and experimental validation. IEEE Electron Device Lett. 28(7), 593 (2007).

S. Kumar , J.Y. Murthy , and M.A. Alam : Percolating conduction in finite nanotube networks. Phys. Rev. Lett. 95(6), (2005).

Y. Miyata , K. Shiozawa , Y. Asada , Y. Ohno , R. Kitaura , T. Mizutani , and H. Shinohara : Length-sorted semiconducting carbon nanotubes for high-mobility thin film transistors. Nano Res. 4(10), 963 (2011).

N. Pimparkar , J. Guo , and M.A. Alam : Performance assessment of subpercolating nanobundle network thin-film transistors by an analytical model. IEEE Trans. Electron Devices 54(4), 637 (2007).

J.A. Fagan , J.R. Simpson , B.J. Bauer , S.H.D. Lacerda , M.L. Becker , J. Chun , K.B. Migler , A.R.H. Walker , and E.K. Hobbie : Length-dependent optical effects in single-wall carbon nanotubes. J. Am. Chem. Soc. 129(34), 10607 (2007).

X.Y. Huang , R.S. McLean , and M. Zheng : High-resolution length sorting and purification of DNA-wrapped carbon nanotubes by size-exclusion chromatography. Anal. Chem. 77(19), 6225 (2005).

J.P. Casey , S.M. Bachilo , C.H. Moran , and R.B. Weisman : Chirality-resolved length analysis of single-walled carbon nanotube samples through shear-aligned photoluminescence anisotropy. ACS Nano 2(8), 1738 (2008).

J. Chun , J.A. Fagan , E.K. Hobbie , and B.J. Bauer : Size separation of single-wall carbon nanotubes by flow-field flow fractionation. Anal. Chem. 80(7), 2514 (2008).

J.A. Fagan , M.L. Becker , J. Chun , and E.K. Hobbie : Length fractionation of carbon nanotubes using centrifugation. Adv. Mater. 20(9), 1609 (2008).

J.A. Fagan , M.L. Becker , J.H. Chun , P.T. Nie , B.J. Bauer , J.R. Simpson , A. Hight-Walker , and E.K. Hobbie : Centrifugal length separation of carbon nanotubes. Langmuir 24(24), 13880 (2008).

E.K. Hobbie , J.A. Fagan , J. Obrzut , and S.D. Hudson : Microscale polymer-nanotube composites. ACS Appl. Mater. Interfaces 1(7), 1561 (2009).

Y. Asada , Y. Miyata , K. Shiozawa , Y. Ohno , R. Kitaura , T. Mizutani , and H. Shinohara : Thin-film transistors with length-sorted DNA-wrapped single-wall carbon nanotubes. J. Phys. Chem. C 115(1), 270 (2011).

M.S. Arnold , A.A. Green , J.F. Hulvat , S.I. Stupp , and M.C. Hersam : Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 1(1), 60 (2006).

E.J.F. Carvalho and M.C. dos Santos : Role of surfactants in carbon nanotubes density gradient separation. ACS Nano. 4(2), 765 (2010).

R. Si , K. Wang , T. Chen , and Y. Chen : Chemometric determination of the length distribution of single walled carbon nanotubes through optical spectroscopy. Anal. Chim. Acta 708(1–2), 28 (2011).

P.G. Collins , K. Bradley , M. Ishigami , and A. Zettl : Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287(5459), 1801 (2000).

W. Kim , A. Javey , O. Vermesh , O. Wang , Y.M. Li , and H.J. Dai : Hysteresis caused by water molecules in carbon nanotube field-effect transistors. Nano Lett. 3(2), 193 (2003).

G.E. Pike and C.H. Seager : Percolation and conductivity-computer study. 1. Phys. Rev. B: Condens. Matter 10(4), 1421 (1974).

C.W. Lee , X.D. Han , F.M. Chen , J. Wei , Y. Chen , M.B. Chan-Park , and L.J. Li : Solution-processable carbon nanotubes for semiconducting thin-film transistor devices. Adv. Mater. 22(11), 1278 (2010).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: