Skip to main content
×
Home
    • Aa
    • Aa

Properties of nanostructured diamond-silicon carbide composites sintered by high pressure infiltration technique

  • G.A. Voronin (a1), T.W. Zerda (a1), J. Gubicza (a2), T. Ungár (a3) and S.N. Dub (a4)...
Abstract

A high-pressure silicon infiltration technique was applied to sinter diamond–SiC composites with different diamond crystal sizes. Composite samples were sintered at pressure 8 GPa and temperature 2170 K. The structure of composites was studied by evaluating x-ray diffraction peak profiles using Fourier coefficients of ab initio theoretical size and strain profiles. The composite samples have pronounced nanocrystalline structure: the volume-weighted mean crystallite size is 41–106 nm for the diamond phase and 17–37 nm for the SiC phase. The decrease of diamond crystal size leads to increased dislocation density in the diamond phase, lowers average crystallite sizes in both phases, decreases composite hardness, and improves fracture toughness.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail address: t.zerda@tcu.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

5.P. Larsson , N. Axen , T. Ekstrom , S. Gordeev andS. Hogmark : Wear of a new type of diamond composite. Int. J. Refract. Met. Hard Mater . 17, 453 (1999).

6.S.K. Gordeev , S.K. Zhukov , L.V. Danchukova andT.C. Ekstrom : Low-pressure fabrication of diamond-SiC-Si composites. Inorg. Mater. 37 579 (2001).

7.P.D. Ownby andJ. Liu : Nano diamond enhanced silicon carbide matrix composites. Ceram. Eng. Sci. Proc . 12, 1345 (1991).

8.Y.S. Ko , T. Tsurumi , O. Fukunaga andT. Yano : High pressure sintering of diamond-SiC composite. J. Mater. Sci. 36 469 (1992).

10.G.A. Voronin , T.W. Zerda , J. Qian , Y. Zhao , D. He , and S.N. Dub , Diamond-SiC nanocomposites sintered from a mixture of diamond and silicon nanopowders. Diamond Relat. Mater. 12, 1477 (2003).

11.X. Jiang andC.P. Klages : Synthesis of diamond/β–SiC composite films by microwave plasma assisted chemical vapor deposition. Appl. Phys. Lett. 61 1629 (1992).

14.T. Ungar , J. Gubicza , G. Ribarik andA. Borbely : Crystallite size distribution and dislocation structure determined by diffraction profile analysis: Principles and practical application to cubic and hexagonal crystals. J. Appl. Crystallogr. 34 298 (2001).

16.T. Ungár andG. Tichy The effect of dislocation contrast on x-ray line profiles in untextured polycrystals. Phys. Status Solidi A 171, 425 (1999)

17.H.J. McSkimin andW.L. Bond : Elastic moduli of diamond. Phys. Rev. 105 116 (1957).

19.T. Ungár , I. Dragomir , Á. Révész andA. Borbély : The contrast factors of dislocations in cubic crystals: The dislocation model of strain anisotropy in practice. J. Appl. Crystallogr. 32 992 (1999).

20.J. Gubicza , M. Kassem , G. Ribárik andT. Ungár : The evolution of the microstructure in mechanically alloyed Al-Mg studied by x-ray diffraction. Mater. Sci. Eng. A 372 115 (2004).

21.G. Voronin , C. Pantea , T.W. Zerda andK. Ejsmont : Oriented growth of β-SiC on diamond crystals at high pressure. J. Appl. Phys. 90 5933 (2001).

23.S. Veprek In Handbook of Ceramic Hard Materials, edited by R. Riedl (Wiley-VCH, Weinheim, Germany, 2000), p. 104.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: