Skip to main content
×
Home
    • Aa
    • Aa

Towards an integrated materials characterization toolbox

  • Ian M. Robertson (a1), Christopher A. Schuh (a2), John S. Vetrano (a3), Nigel D. Browning (a4), David P. Field (a5), Dorte Juul Jensen (a6), Michael K. Miller (a7), Ian Baker (a8), David C. Dunand (a9), Rafal Dunin-Borkowski (a10), Bernd Kabius (a11), Tom Kelly (a12), Sergio Lozano-Perez (a13), Amit Misra (a14), Gregory S. Rohrer (a15), Anthony D. Rollett (a15), Mitra L. Taheri (a16), Greg B. Thompson (a17), Michael Uchic (a18), Xun-Li Wang (a19) and Gary Was (a20)...
Abstract
Abstract

The material characterization toolbox has recently experienced a number of parallel revolutionary advances, foreshadowing a time in the near future when material scientists can quantify material structure evolution across spatial and temporal space simultaneously. This will provide insight to reaction dynamics in four-dimensions, spanning multiple orders of magnitude in both temporal and spatial space. This study presents the authors’ viewpoint on the material characterization field, reviewing its recent past, evaluating its present capabilities, and proposing directions for its future development. Electron microscopy; atom probe tomography; x-ray, neutron and electron tomography; serial sectioning tomography; and diffraction-based analysis methods are reviewed, and opportunities for their future development are highlighted. Advances in surface probe microscopy have been reviewed recently and, therefore, are not included [D.A. Bonnell et al.: Rev. Modern Phys. in Review]. In this study particular attention is paid to studies that have pioneered the synergetic use of multiple techniques to provide complementary views of a single structure or process; several of these studies represent the state-of-the-art in characterization and suggest a trajectory for the continued development of the field. Based on this review, a set of grand challenges for characterization science is identified, including suggestions for instrumentation advances, scientific problems in microstructure analysis, and complex structure evolution problems involving material damage. The future of microstructural characterization is proposed to be one not only where individual techniques are pushed to their limits, but where the community devises strategies of technique synergy to address complex multiscale problems in materials science and engineering.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: ianr@illinois.edu
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1.A.C. Lund and P.W. Voorhees : A quantitative assessment of the three-dimensional microstructure of γ-γ’ alloy. Philos. Mag. 83, 1719 (2003).

2.R. Mendoza , J. Alkemper , and P.W. Voorhees : The morphological evolution of dendritic microstructures during coarsening. Metall. Mater. Trans. A 34, 481 (2003).

4.B.C. Larson , W. Wang , G.E. Ice , J.D. Budai , and J.Z. Tischler : Three dimensional x-ray structural microscopy with submicrometre resolution. Nature 415, 887 (2002).

5.H.F. Poulsen , S.F. Nielsen , E.M. Lauridsen , S. Schmidt , R.M. Suter , U. Lienert , L. Margulies , T. Lorentzen , and D.J. Jensen : Three-dimensional maps of grain boundaries and the stress state of individual grains in polycrystals and powders. J. Appl. Cryst. 34, 751 (2001).

6.R.M. Suter , C.M. Hefferan , S.F. Li , D. Hennessy , C. Xiao , U. Lienert and B. Tieman : Probing microstructure dynamics with x-ray diffraction microscopy. J. Eng. Mater. Trans. ASME, 130, 021007–1 (2008).

7.A. King , G. Johnson , D. Engelberg , W. Ludwig , and J. Marrow : Observations of intergranular stress-corrosion cracking in a grain-mapped polycrystal. Science 321, 382 (2008).

8.M.D. Uchic , M.A. Groeber , D.M. Dimiduk , and J.P. Simmons : 3D microstructural characterization of nickel superalloys via serial-sectioning using a dual beam FIB-SEM. Scr. Mater. 55, 23 (2006).

10.M.A. Groeber , B.K. Haley , M.D. Uchic , D.M. Dimiduk , and S. Ghosh : 3D reconstruction and characterization of polycrystalline microstructures using a FIB-SEM system. Mater. Charact. 57, 259 (2006).

11.J. Alkemper and P.W. Voorhees : Quantitative serial sectioning analysis. J. Microsc. 201, 388 (2001).

12.J.E. Spowart : Automated serial sectioning for 3-D analysis of microstructures. Scr. Mater. 55, 5 (2006).

14.A.J. Wilkinson , E.E. Clarke , T.B. Britton , P. Littlewood , and P.S. Karamched : High-resolution electron backscatter diffraction: An emerging tool for studying local deformation. J. Strain Anal. Eng. Des. 45, 365 (2010).

15.A.J. Wilkinson , G. Meaden , and D.J. Dingley : High resolution mapping of strains and rotations using electron backscatter diffraction. Mater. Sci. Technol. 22, 1271 (2006).

16.A.J. Wilkinson , G. Meaden , and D.J. Dingley : High-resolution elastic strain measurement from electron backscatter diffraction patterns: New levels of sensitivity. Ultramicroscopy 106, 307 (2006).

17.H.F. Poulsen : Three-Dimensional X-Ray Diffraction Microscopy: Mapping Polycrystals and their Dynamics (Springer-Verlag, Berlin Heidelberg, 2004).

18.G.E. Ice and B.C. Larson : 3D x-ray crystal microscope. Adv. Eng. Mater. 2, 643 (2000).

20.B.F. McEwen , C. Renken , M. Marko , C. Mannella : Principles and practice in electron tomography. Methods Cell Biol. 89, 129, (2008).

21.P.A. Midgley and R.E. Dunin-Borkowski : Electron tomography and holography in materials science. Nat. Mater. 8, 271 (2009).

23.C. Hetherington : Aberration correction for TEM. Mater. Today 7, 50 (2004).

24.O.L. Krivanek , G.J. Corbin , N. Dellby , B.F. Elston , R.J. Keyse , M.F. Murfitt , C.S. Own , Z.S. Szilagyi , and J.W. Woodruff : An electron microscope for the aberration-corrected era. Ultramicroscopy 108, 179 (2008).

25.H. Rose : Aberration correction in electron microscopy. Int. J. Mater. Res. 97, 885 (2006).

26.Y. Zhu and J. Wall : Aberration-corrected electron microscopes at Brookhaven Microscopes at Brookhaven National Laboratory. Advances in Imaging and Electron Physics 153, 481 (2008).

27.The Otto Scherzer special issue on aberration-corrected electron microscopy. Guest editors: D.J. Smith and U. Dahmen : Microsc. Microanal. 16, (2010).

28.M. Chergui and A.H. Zewail : Electron and x-ray methods of ultrafast structural dynamics: Advances and applications. ChemPhysChem. 10, 28 (2009).

30.T.F. Kelly and M.K. Miller : Invited review article: Atom probe tomography. Rev. Sci. Instrum. 78, 031101 (2007).

31.M.K. Miller : Atom Probe Tomography: Analysis at the Atomic Level (Kluwer Academic/Plenum Publishers, New York, 2000).

32.B.G. Clark , P. Ferreira , and I.M. Robertson : Microsc. Res. Tech. 72, 121–292 (2009).

35.M.D. Uchic : 3D microstructural characterization: Methods, analysis, and applications. JOM 58, 24 (2006).

38.D.N. Seidman: Three dimensional atom probe tomography: Advances and applications. Ann. Rev. Mater. Res. 37, 137 (2007).

40.M. Haider , H. Rose , S. Uhlemann , B. Kabius , and K. Urban : Towards 0.1 nm resolution with the first spherically corrected transmission electron microscope. J. Electron Microsc. (Tokyo). 47, 395 (1998).

41.H. Rose : Prospects for realizing a sub-Å sub-eV resolution EFTEM. Ultramicroscopy 78, 13 (1999).

42.M. Haider , H. Rose , S. Uhlemann , E. Schwan , B. Kabius , and K. Urban : A spherical-aberration-corrected 200 kV transmission electron microscope. Ultramicroscopy 75, 53 (1998).

43.M. Haider , H. Müller , S. Uhlemann , J. Zach , U. Loebau , and R. Hoeschen : Prerequisites for a Cc/Cs-corrected ultrahigh-resolution TEM. Ultramicroscopy 108, 167 (2008).

45.P. Baum and A.H. Zewail : Attosecond electron pulses for 4D diffraction and microscopy. Proc. Natl. Acad. Sci. U.S.A. 104, 18409 (2007).

46.T. LaGrange , M.R. Armstrong , K. Boyden , C.G. Brown , G.H. Campbell , J.D. Colvin , W.J. DeHope , A.M. Frank , D.J. Gibson , F.V. Hartemann , J.S. Kim , W.E. King , B.J. Pyke , B.W. Reed , M.D. Shirk , R.M. Shuttlesworth , B.C. Stuart , B.R. Torralva , and N.D. Browning : Single-shot dynamic transmission electron microscopy. Appl. Phys. Lett. 89, 044105 (2006).

47.S.A. Hilbert , C. Uiterwaal , B. Barwick , H. Batelaan , and A.H. Zewail : Temporal lenses for attosecond and femtosecond electron pulses. Proc. Natl. Acad. Sci. U.S.A. 106, 10558 (2009).

49.M.A. Haque and M.T.A. Saif : Microscale materials testing using MEMS actuators. J. Microelectromech. Syst. 10, 146 (2001).

51.H.D. Espinosa , Y. Zhu , and N. Moldovan : Design and operation of a MEMS-based material testing system for nanomechanical characterization. J. Microelectromech. Syst. 16, 1219 (2007).

53.J. Frank : Electron Tomography: Methods for Three-Dimensional Visualization of Structures in the Cell (Springer Science and Business Media, LLC., New York, 2006).

54.S. Subramaniam and J.L. Milne : Three-dimensional electron microscopy at molecular resolution. Annu. Rev. Biophys. Biomol. Struct. 33, 141 (2004).

55.J.S. Lengyel , J.L. Milne , and S. Subramaniam : Electron tomography in nanoparticle imaging and analysis. Nanomedicine 3, 125 (2008).

56.B.F. McEwen and M. Marko : The emergence of electron tomography as an important tool for investigating cellular ultrastructure. J. Histochem. Cytochem. 49, 553 (2001).

57.K.J. Batenburg , S. Bals , J. Sijbers , C. Kubel , P.A. Midgley , J.C. Hernandez , U. Kaiser , E.R. Encina , E.A. Coronado , and G. Van Tendeloo : 3D imaging of nanomaterials by discrete tomography. Ultramicroscopy 109, 730 (2009).

58.J.C. Gonzalez , J.C. Hernandez , M. Lopez-Haro , E. Del Rio , J.J. Delgado , A.B. Hungria , S. Trasobares , S. Bernal , P.A. Midgley , and J.J. Calvino : 3D characterization of gold nanoparticles supported on heavy-metal oxide catalysts by HAADF-STEM electron tomography. Angew. Chem. Int. Ed. 48, 5313 (2009).

60.G. Mobus and B.J. Inkson : Three-dimensional reconstruction of buried nanoparticles by element-sensitive tomography based on inelastically scattered electrons. Appl. Phys. Lett. 79, 1369 (2001).

61.E.P.W. Ward , T.J.V. Yates , J.J. Fernandez , D.E.W. Vaughan , and P.A. Midgley : Three-dimensional nanoparticle distribution and local curvature of heterogeneous catalysts revealed by electron tomography. J. Phys. Chem. C. 111, 11501 (2007).

62.R.J.T. Houk , B.W. Jacobs , F.E. Gabaly , N.N. Chang , A.A. Talin , D.D. Graham , S.D. House , I.M. Robertson , M.D. Allendorf : Silver cluster formation, dynamics, and chemistry in metal-organic frameworks. Nano Lett. 9, 3413 (2009).

63.I. Arslan , T.J.V. Yates , N.D. Browning , and P.A. Midgley : Embedded nanostructures revealed in three dimensions. Science 309, 2195 (2005).

64.M. Weyland , P.A. Midgley , and J.M. Thomas : Electron tomography of nanoparticle catalysts on porous supports: A new technique based on Rutherford scattering. J. Phys. Chem. B 105, 7882 (2001).

65.L.C. Gontard , R.E. Dunin-Borkowski , R.K.K. Chong , D. Ozkaya , and P.A. Midgley : Electron tomography of Pt nanocatalyst particles and their carbon support. J. Phys. Conf. Ser. 26, 203 (2006).

66.J.S. Barnard , J. Sharp , J.R. Tong , and P.A. Midgley : High-resolution three-dimensional imaging of dislocations. Science 313, 319 (2006).

67.J.S. Barnard , J. Sharp , J.R. Tong , and P.A. Midgley : Weak-beam dark-field electron tomography of dislocations in GaN. J. Phys. Conf. Ser. 26, 247 (2006).

68.J.H. Sharp , J.S. Barnard , K. Kaneko , K. Higashida , and P.A. Midgley : Dislocation tomography made easy: A reconstruction from ADF STEM images obtained using automated image shift correction. J. Phys. Conf. Ser. 126, 012013 (2008).

69.M. Tanaka , K. Higashida , K. Kaneko , S. Hata , and M. Mitsuhara : Crack tip dislocations revealed by electron tomography in silicon single crystal. Scr. Mater. 59, 901 (2008).

70.C. Phatak , M. Beleggiab , and M.D. Graef : Vector field electron tomography of magnetic materials: Theoretical development. Ultramicroscopy 108, 503 (2008).

71.C. Phatak , M.D. Graef , A. Petford-Long , M. Tanase , and A. Imre : Reconstruction of 3D magnetic induction using Lorentz TEM. Microsc. Microanal. 14, 1055 (2008).

72.C. Phatak , M. Tanase , A.K. Petford-Long , and M. De Graef : Determination of magnetic vortex polarity from a single Lorentz Fresnel image. Ultramicroscopy 109, 264 (2009).

73.W. Baumeister : Electron tomography: Towards visualizing the molecular organization of the cytoplasm. Curr. Opin. Struct. Biol. 12, 679 (2002).

74.P.A. Midgley and M. Weyland : 3D electron microscopy in the physical sciences: The development of Z-contrast and EFTEM tomography. Ultramicroscopy 96, 413 (2003).

75.I. Arslan , J.R. Tong , and P.A. Midgley : Reducing the missing wedge: High-resolution dual axis tomography of inorganic materials. Ultramicroscopy 106, 994 (2006).

76.I. Arslan , J.C. Walmsley , E. Rytter , E. Bergene , and P.A. Midgley : Toward three-dimensional nanoengineering of heterogeneous catalysts. J. Am. Chem. Soc. 130, 5716 (2008).

77.H. Friedrich , P.E. De Jongh , A.J. Verkleij , and K.P. De Jong : Electron tomography for heterogeneous catalysts and related nanostructured materials. Chem. Rev. 109, 1613 (2009).

78.A.B. Hungria , D. Eder , A.H. Windle , and P.A. Midgley : Visualization of the three-dimensional microstructure of TiO2 nanotubes by electron tomography. Catal. Today 143, 225 (2009).

79.J.C. Hernández-Garrido , K. Yoshida , P.L. Gai , E.D. Boyes , C.H. Christensen and P.A. Midgley : The location of gold nanoparticles on titania: A study by high resolution aberration-corrected electron microscopy and 3D electron tomography. Catal. Today 160, 165 (2011).

80.K. Yoshida , Y.H. Ikuhara , S. Takahashi , T. Hirayama , T. Saito , S. Sueda , N. Tanaka , and P.L. Gai : The three-dimensional morphology of nickel nanodots in amorphous silica and their role in high-temperature permselectivity for hydrogen separation. Nanotechnology 20, 315703 (2009).

81.M. Weyland , T.J.V. Yates , R.E. Dunin-Borkowski , L. Laffont , and P.A. Midgley : Nanoscale analysis of three-dimensional structures by electron tomography. Scr. Mater. 55, 29 (2006).

82.V. Ortalan , M. Herrera , D.G. Morgan , N.D. Browning : Application of image processing to STEM tomography of low contrast materials. Ultramicroscopy 110, 67 (2009).

83.L.C. Gontard , R.E. Dunin-Borkowski , and D. Ozkaya : Three-dimensional shapes and spatial distributions of Pt and PtCr catalyst nanoparticles on carbon black. J. Microsc. 232, 248 (2008).

84.K. Jarausch , P. Thomas , D.N. Leonard , R. Twesten , and C.R. Booth : Four-dimensional STEM-EELS: Enabling nano-scale chemical tomography. Ultramicroscopy 109, 326 (2009).

85.A. Yurtsever , M. Weyland , and D.A. Muller : Three-dimensional imaging of nonspherical silicon nanoparticles embedded in silicon oxide by plasmon tomography. Appl. Phys. Lett. 89, 151920 (2006).

86.K. Kaneko , R. Nagayama , K. Inoke , E. Noguchi , and Z. Horita : Application of three-dimensional electron tomography using bright-field imaging: Two types of Si-phases in Al-Si alloy. Sci. Technol. Adv. Mater. 7, 726 (2006).

87.M. Tanaka , M. Honda , M. Mitsuhara , S. Hata , K. Kaneko , and K. Higashida : Three-dimensional observation of dislocations by electron tomography in a silicon crystal. Mater. Trans. 49, 1953 (2008).

89.S. Hata , K. Kimura , H. Gao , S. Matsumura , M. Doi , T. Moritani , J.S. Barnard , J.R. Tong , J.H. Sharp , and P.A. Midgley : Electron tomography imaging and analysis of g and g′ domains in Ni-based superalloys. Adv. Mater. (Deerfield Beach Fla.) 20, 1905 (2008).

90.S.J. Lade , D. Paganin , and M.J. Morgan : 3-D Vector tomography of Doppler-transformed fields by filtered-backprojection. Opt. Commun. 253, 382 (2005).

93.S. Bals , K.J. Batenburg , D. Liang , O. Lebedev , G. Van Tendeloo , A. Aerts , J.A. Martens , and C.E.A. Kirschhock : Quantitative three-dimensional modeling of zeotile through discrete electron tomography. J. Am. Chem. Soc. 131, 4769 (2009).

94.J.R. Jinschek , K.J. Batenburg , H.A. Calderon , R. Kilaas , V. Radmilovic , and C. Kisielowski : 3-D reconstruction of the atomic positions in a simulated gold nanocrystal based on discrete tomography: Prospects of atomic resolution electron tomography. Ultramicroscopy 108, 589 (2008).

95.J. Tong , I. Arslan , and P. Midgley : A novel dual-axis iterative algorithm for electron tomography. J. Struct. Biol. 153, 55 (2006).

96.K.J. Batenburg and J. Sijbers : Generic iterative subset algorithms for discrete tomography. Discrete Appl. Math. 157, 438 (2009).

97.K.J. Batenburg and J. Sijbers : Adaptive thresholding of tomograms by projection distance minimization. Pattern Recognit. 42, 2297 (2009).

98.Z. Saghi , X. Xu , and G. Mobus : Model based atomic resolution tomography. J. Appl. Phys. 106, 024304 (2009).

99.M. Bar Sadan , L. Houben , S.G. Wolf , A. Enyashin , G. Seifert , R. Tenne , and K. Urban : Toward atomic-scale bright-field electron tomography for the study of fullerene-like nanostructures. Nano Lett. 8, 891 (2008).

101.R. Alani and M. Pan : In situ transmission electron microscopy studies and real-time digital imaging. J. Microsc. 203, 128 (2001).

102.M.R. Armstrong , K. Boyden , N.D. Browning , G.H. Campbell , J.D. Colvin , W.J. DeHope , A.M. Frank , D.J. Gibson , F. Hartemann , J.S. Kim , W.E. King , T.B. LaGrange , B.J. Pyke , B.W. Reed , R.M. Shuttlesworth , B.C. Stuart , and B.R. Torralva : Practical considerations for high spatial and temporal resolution dynamic transmission electron microscopy. Ultramicroscopy 107, 356 (2007).

103.D.J. Flannigan , V.A. Lobastov , and A.H. Zewail : Controlled nanoscale mechanical phenomena discovered with ultrafast electron microscopy. Angew. Chem. Int. Ed. 46, 9206 (2007).

105.M.T. Seidel , S. Chen , and A.H. Zewail : Ultrafast electron crystallography. 2. Surface adsorbates of crystalline fatty acids and phospholipids. J. Phys. Chem. C 111, 4920 (2007).

106.D.S. Yang , N. Gedik , and A.H. Zewail : Ultrafast electron crystallography. 1. Nonequilibrium dynamics of nanometer-scale structures. J. Phys. Chem. C 111, 4889 (2007).

107.D. Shorokhov and A.H. Zewail : 4D electron imaging: Principles and perspectives. Phys. Chem. Chem. Phys. 10, 2879 (2008).

108.O. Bostanjoglo and D. Otte : High-speed electron microscopy of nanocrystallization in Al-Ni films by nanosecond laser pulses. Phys. Status Solidi A Appl. Res. 150, 163 (1995).

109.O. Bostanjoglo , R.P. Tornow , and W. Tornow : Nanosecond-exposure electron microscopy of laser-induced phase transformations. Ultramicroscopy 21, 367 (1987).

112.M.L. Taheri , B.W. Reed , T.B. LaGrange , and N.D. Browning : In situ laser synthesis of si nanowires in the dynamic TEM. Small 4, 2187 (2008).

116.P.B. Hirsch , R.W. Horne and M.J. Whelan : Direct observations of arrangement and motion of dislocations in aluminium. Philos. Mag. 1, 677 (1956).

117.C.W. Allen : In situ ion- and electron-irradiation effects studies in transmission electron microscopes. Ultramicroscopy 56, 200 (1994).

118.C.B. Carter and D.L. Kohlstedt : Electron irradiation damage in natural quartz grains. Phys. Chem. Miner. 7, 110 (1981).

119.D.F. Pedraza and J. Koike : Dimensional changes in grade H-451 nuclear graphite due to electron irradiation. Carbon 32, 727 (1994).

120.B.W. Smith and D.E. Luzzi : Electron irradiation effects in single wall carbon nanotubes. J. Appl. Phys. 90, 3509 (2001).

121.T. Nagase and Y. Umakoshi : Electron irradiation induced crystallization of supercooled liquid in Zr based alloys. Mater. Trans. 48, 151 (2007).

122.S. Sepulveda-Guzman , N. Elizondo-Villarreal , D. Ferrer , A. Torres-Castro , X. Gao , J.P. Zhou , and M. Jose-Yacaman : In situ formation of bismuth nanoparticles through electron-beam irradiation in a transmission electron microscope. Nanotechnology 18, 335604 (2007).

123.X.T. Zu , F.R. Wan , S. Zhu , and L.M. Wang : Irradiation-induced martensitic transformation of TiNi shape memory alloys. Physica B 351, 59 (2004).

124.I. Jencic , M.W. Bench , I.M. Robertson , and M.A. Kirk : Electron-beam-induced crystallization of isolated amorphous regions in Si, Ge, GaP, and GaAs. J. Appl. Phys. 78, 974 (1995).

125.E.P. Butler : In situ experiments in the transmission electron microscope. Rep. Prog. Phys. 42, 833 (1979).

126.D.K. Dewald , T.C. Lee , I.M. Robertson , and H.K. Birnbaum : Dislocation structures ahead of advancing cracks. Metall. Mater. Trans. A, 21, 2411 (1990).

128.P. Castany , F. Pettinari-Sturmel , J. Crestou , J. Douin , and A. Coujou : Experimental study of dislocation mobility in a Ti-6Al-4V alloy. Acta Mater. 55, 6284 (2007).

132.C.E. Carlton and P.J. Ferreira : Dislocation motion-induced strain in nanocrystalline materials: Overlooked considerations. Mater. Sci. Eng. A 486, 672 (2008).

133.J. Deneen , W.M. Mook , A. Minor , W.W. Gerberich , and C.B. Carter : In situ deformation of silicon nanospheres. J. Mater. Sci. 41, 4477 (2006).

134.A. Radisic , F.M. Ross , and P.C. Searson : In situ study of the growth kinetics of individual island electrodeposition of copper. J. Phys. Chem. B 110, 7862 (2006).

135.M.J. Williamson , R.M. Tromp , P.M. Vereecken , R. Hull , and F.M. Ross : Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat. Mater. 2, 532 (2003).

136.A. Radisic , P.M. Vereecken , J.B. Hannon , P.C. Searson , and F.M. Ross : Quantifying electrochemical nucleation and growth of nanoscale clusters using real-time kinetic data. Nano Lett. 6, 238 (2006).

137.T.C. Lee , D.K. Dewald , J.A. Eades , I.M. Robertson , and H.K. Birnbaum : An environmental cell transmission electron microscope. Rev. Sci. Instrum. 62, 1438 (1991).

138.I.M. Robertson and D. Teter : Controlled environment transmission electron microscopy. J. Microsc. Res. Tech. 42, 260 (1998).

140.P.L. Gai : Development of wet environmental TEM (Wet-ETEM) for in situ studies of liquid-catalyst reactions on the nanoscale. Microsc. Microanal. 8, 21 (2002).

144.J.A. Hinks : A review of transmission electron microscopes with in situ ion irradiation. Nucl. Instrum. Meth. B 267, 3652 (2009).

147.P.L. Gai and E.D. Boyes : Advances in atomic resolution in situ environmental transmission electron microscopy and 1A aberration corrected in situ electron microscopy. Microsc. Res. Tech. 72, 153 (2009).

148.I.M. Robertson , H.K. Birnbaum , and P. Sofronis : Hydrogen effects on plasticity, in Dislocations in Solids, edited by J.P. Hirth and L. Kubin (Elsevier, 2009).

149.P. Li , J. Liu , N. Nag , and P.A. Crozier : In situ synthesis and characterization of Ru promoted Co/Al2O3 Fischer-Tropsch catalysts. Appl. Catal. A Gen. 307, 212 (2006).

150.P. Li , J. Liu , N. Nag , and P.A. Crozier : In situ preparation of Ni-Cu/TiO2 bimetallic catalysts. J. Catal. 262, 73 (2009).

151.A. Gamalski , E.S. Moore , M.M.J. Treacy , R. Sharma , and P. Rez : Diffusion-gradient-induced length instabilities in the catalytic growth of carbon nanotubes. Appl. Phys. Lett. 95, 233109 (2009).

152.R. Sharma , P. Rez , and M.M.J. Treacy : Direct observations of the growth of carbon nanotubes using in situ transmission electron microscopy. J. Surf. Sci. Nanotechnol. 4, 460 (2006).

153.O. Bostanjoglo and P. Thomsen-Schmidt : Time-resolved TEM of laser-induced structural changes in GeTe films, Appl. Surf. Sci. 46, 392 (1990).

154.T. LaGrange , G.H. Campbell , B. Reed , M. Taheri , J.B. Pesavento , J.S. Kim , and N.D. Browning : Nanosecond time-resolved investigations using the in situ of dynamic transmission electron microscope (DTEM). Ultramicroscopy 108, 1441 (2008).

155.F. Carbone , B. Barwick , K. Oh-Hoon , P. Hyun Soon , J.S. Baskin , and A.H. Zewail : EELS femtosecond resolved in 4D ultrafast electron microscopy. Chem. Phys. Lett. 468, 107 (2009).

156.F. Carbone , K. Oh-Hoon , and A.H. Zewail : Dynamics of chemical bonding mapped by energy-resolved 4D electron microscopy. Science 325, 181 (2009).

157.A. Gahlmann , P. Sang Tae , and A.H. Zewail : Ultrashort electron pulses for diffraction, crystallography and microscopy: Theoretical and experimental resolutions. Phys. Chem. Chem. Phys. 10, 2894 (2008).

158.H.S. Park , J.S. Baskin , B. Barwick , O.-H. Kwon , and A.H. Zewail : 4D ultrafast electron microscopy: Imaging of atomic motions, acoustic resonances, and moire fringe dynamics. Ultramicroscopy 110, 7 (2009).

159.A. Yurtsever and A.H. Zewail : 4D Nanoscale diffraction observed by convergent-beam ultrafast electron microscopy. Science 326, 708 (2009).

161.B.W. Reed , T. LaGrange , R.M. Shuttlesworth , D.J. Gibson , G.H. Campbell , and N.D. Browning : Solving the accelerator-condenser coupling problem in a nanosecond dynamic transmission electron microscope. Rev. Sci. Instrum. 81, 053706 (2010).

162.M.K. Miller and R.G. Forbes : Atom probe tomography. Mater. Charact. 60, 461 (2009).

163.G.L. Kellogg and T.T. Tsong : Pulsed-laser atom-probe field-ion microscopy. J. Appl. Phys. 51, 1184 (1980).

167.S. Tin , A.C. Yeh , A.P. Ofori , R.C. Reed , S.S. Babu , and M.K. Miller : Atomic partitioning of ruthenium in Ni-based superalloys, in Superalloys 2004: Proceedings of the Tenth International Symposium on Superalloys. Sponsored by the TMS Seven Springs International Symposium Committee, in Cooperation with the TMS High Temperature Alloys Committee and ASM International, September 19–23, 2004, Seven Springs Mountain Resort in Champion, PA (TMS, Warrendale, PA, 2004).

168.F. Vurpillot , J. Houard , A. Vella , and B. Deconihout : Thermal response of a field emitter subjected to ultra-fast laser illumination. J. Phys. D: Appl. Phys. 42, 125502 (2009).

170.K. Inoue , F. Yano , A. Nishida , H. Takamizawa , T. Tsunomura , Y. Nagai , and M. Hasegawa : Dopant distributions in n-MOSFET structure observed by atom probe tomography. Ultramicroscopy 109, 1479 (2009).

172.Y.M. Chen , T. Ohkubo , M. Kodzuka , K. Morita , and K. Hono : Laser-assisted atom probe analysis of zirconia/spinel nanocomposite ceramics. Scr. Mater. 61, 693 (2009).

180.M.P. Moody , B. Gault , L.T. Stephenson , D. Haley , and S.P. Ringer : Qualification of the tomographic reconstruction in atom probe by advanced spatial distribution map techniques. Ultramicroscopy 109, 815 (2009).

181.M.K. Miller and T.F. Kelly : The atom TOMography (ATOM) concept. Microsc. Microanal. 16, 1856 (2010).

182.J. Freitag , S. Kipfstuhl , and S.H. Faria : The connectivity of crystallite agglomerates in low-density firn at Kohnen station, Dronning Maud Land, Antarctica. Ann. Glaciol. 49, 114 (2008).

183.D. Cullen and I. Baker : Observation of impurities in ice. Microsc. Res. Tech. 55, 198 (2001).

184.D. Cullen and I. Baker : Observation of sulfate crystallites in Vostok accretion ice. Mater. Charact. 48, 263 (2002).

185.I. Baker and D. Cullen : The structure and chemistry of 94 m Greenland Ice Sheet Project 2 ice. Ann. Glaciol. 35, 224 (2002).

186.I. Baker , D. Cullen , and D. Iliescu : The microstructural location of impurities in ice. Can. J. Phys. 81, 1 (2003).

187.F. Domine , T. Lauzier , A. Cabanes , L. Legagneux , W.F. Kuhs , K. Techmer , and T. Heinrichs : Snow metamorphism as revealed by scanning electron microscopy. Microsc. Res. Tech. 62, 33 (2003).

188.D. Iliescu , I. Baker , and H. Chang : Determining the orientations of ice crystals using electron backscatter patterns. Microsc. Res. Tech. 63, 183 (2004).

189.R. Obbard , D. Iliescu , D. Cullen , J. Chang , and I. Baker : SEM/EDS comparison of polar and seasonal temperate ice. Microsc. Res. Tech. 62, 49 (2003).

190.I. Baker , D. Iliescu , R. Obbard , H. Chang , B. Bostick , and C.P. Daghlian : Microstructural characterization of ice cores. Ann. Glaciol. 42, 441 (2005).

191.R. Obbard , I. Baker , and K. Sieg : Using electron backscatter diffraction patterns to examine recrystallization in polar ice sheets. J. Glaciol. 52, 546 (2006).

192.Y. Chino and D.C. Dunand : Directionally freeze-cast titanium foam with aligned, elongated pores. Acta Mater. 56, 105 (2008).

193.S. Deville : Freeze-casting of porous ceramics: A review of current achievements and issues. Adv. Eng. Mater. 10, 155 (2008).

194.E.D. Spoerke , N.G.D. Murray , H. Li , L.C. Brinson , D.C. Dunand , and S.I. Stupp : Titanium with aligned, elongated pores for orthopedic tissue engineering applications. J. Biomed. Mater. Res. A 84A, 402 (2008).

196.J. Freitag , F. Wilhelms , and S. Kipfstuhl : Microstructure-dependent densification of polar firn derived from x-ray microtomography. J. Glaciol. 50, 243 (2004).

197.C.C. Lundy , M.Q. Edens , and R.L. Brown : Measurement of snow density and microstructure using computed tomography. J. Glaciol. 48, 312 (2002).

199.J. Schwander , T. Sowers , J.M. Barnola , T. Blunier , A. Fuchs , and B. Malaize : Age scale of the air in the summit ice: Implication for glacial-interglacial temperature change. J. Geophys. Res. 102, 19483 (1997).

200.T. Sowers , M. Bender , D. Raynaud , and Y.S. Korotkevich : Delta-N-15 of N2 in air trapped in polar ice—A tracer of gas-transport in the firn and a possible constraint on ice age-gas age-differences. J. Geophys. Res. 97, 15683 (1992).

201.M. Bender , T. Sowers , and E. Brook : Gases in ice cores. Proc. Natl. Acad. Sci. U.S.A. 94, 8343 (1997).

202.M. Bender , T. Sowers , and V. Lipenkov : On the concentrations of O-2, N-2, and Ar in trapped gases from ice cores. J. Geophys. Res. 100, 18651 (1995).

203.Y.K. Chen , Y.S. Chu , Y. JaeMock , I. McNulty , S. Qun , P.W. Voorhees , and D.C. Dunand : Morphological and topological analysis of coarsened nanoporous gold by x-ray nanotomography. Appl. Phys. Lett. 96, 043122 (2010).

204.B.C. Larson , A. El-Azab , W.G. Yang , J.Z. Tischler , W.J. Liu , and G.E. Ice : Experimental characterization of the mesoscale dislocation density tensor. Philos. Mag. 87, 1327 (2007).

205.R.M. Suter , D. Hennessy , C. Xiao , and U. Lienert : Forward modeling method for microstructure reconstruction using x-ray diffraction microscopy: Single-crystal verification. Rev. Sci. Instrum. 77, 123905 (2006).

206.J.S. Park , P. Revesz , A. Kazimirov , and M.P. Miller : A methodology for measuring in situ lattice strain of bulk polycrystalline material under cyclic load. Rev. Sci. Instrum. 78, 023910 (2007).

207.B.C. Larson , W. Yang , J.Z. Tischler , G.E. Ice , J.D. Budai , W. Liu , and H. Weiland : Micron-resolution 3-D measurement of local orientations near a grain-boundary in plane-strained aluminum using x-ray microbeams. Int. J. Plast. 20, 543 (2004).

208.J.D. Budai , W. Liu , J.Z. Tischler , Z.W. Pan , D.P. Norton , B.C. Larson , W. Yang , and G.E. Ice : Polychromatic x-ray micro- and nanodiffraction for spatially-resolved structural studies. Thin Solid Films 516, 8013 (2008).

210.H.J. Bunge , L. Wcislak , H. Klein , U. Garbe , and J.R. Schneider : Texture and microstructure analysis with high-energy synchrotron radiation. Adv. Eng. Mater. 4, 300 (2002).

211.S. Schmidt , S.F. Nielsen , C. Gundlach , L. Margulies , X. Huang , and D.J. Jensen : Watching the growth of bulk grains during recrystallization of deformed metals. Science 305, 229 (2004).

212.R.B. Godiksen , Z.T. Trautt , M. Upmanyu , J. Schiotz , D.J. Jensen , and S. Schmidt : Simulations of boundary migration during recrystallization using molecular dynamics. Acta Mater. 55, 6383 (2007).

213.M.A. Martorano , M.A. Fortes , and A.F. Padilha : The growth of protrusions at the boundary of a recrystallized grain. Acta Mater. 54, 2769 (2006).

214.S. Sreekala and M. Haataja : Recrystallization kinetics: A coupled coarse-grained dislocation density and phase-field approach. Phys. Rev. B 76, 094109 (2007).

215.Y.B. Zhang , A. Godfrey , Q. Liu , W. Liu , and D.J. Jensen : Analysis of the growth of individual grains during recrystallization in pure nickel. Acta Mater. 57, 2631 (2009).

217.J. Kacher , I.M. Robertson , M. Nowell , J. Knapp , and K. Hattar : Study of rapid grain boundary migration in a nanocrystalline Ni thin film. Mater. Sci. Eng. A 528, 1628 (2011).

219.D. Ma , A.D. Stoica , X.L. Wang , Z.P. Lu , M. Xu , and M. Kramer : Efficient local atomic packing in metallic glasses and its correlation with glass-forming ability. Phys. Rev. B 80, 014202 (2009).

221.I.C. Noyan and J.B. Cohen : Residual Stress: Measurement by Diffraction and Interpretation, in Springer Series on Materials Research and Engineering, (Springer-Verlag, Berlin New York Heidelberg, 1987).

222.P.J. Withers and H.K.D.H. Bhadeshia : Overview: Residual stress part 1—Measurement techniques. Mater. Sci. Technol. 17, 355 (2001).

223.X.L. Wang : The application of neutron diffraction to engineering problems. JOM 58, 52 (2006).

224.P.J. Bouchard , P.J. Withers , S.A. McDonald , and R.K. Heenan : Quantification of creep cavitation damage around a crack in a stainless steel pressure vessel. Acta Mater. 52, 23 (2004).

226.X.-L. Wang , E.A. Payzanta , B. Taljata , C.R. Hubbarda , J.R. Keisera , and M.J. Jirinecb : Experimental determination of the residual stresses in a spiral weld overlay tube. Mater. Sci. Eng. A 232, 31 (1997).

230.J.A. Wollmershauser , S. Kabra , and S.R. Agnew : In situ neutron diffraction study of the plastic deformation mechanisms of B2 ordered intermetallic alloys: NiAl, CuZn, and CeAg. Acta Mater. 57, 213 (2009).

231.S. Cheng , A.D. Stoica , X.L. Wang , Y. Ren , J. Almer , J.A. Horton , C.T. Liu , B. Clausen , D.W. Brown , P.K. Liaw , and L. Zuo : Deformation crossover: From nano- to mesoscale. Phys. Rev. Lett. 103, 035502 (2009).

232.G.J. Fan , L. Li , Y. Bin , H. Choo , P.K. Liaw , T.A. Saleh , B. Clausen , and D.W. Brown : In situ neutron-diffraction study of tensile deformation of a bulk nanocrystalline alloy. Mater. Sci. Eng. A 506, 187 (2009).

233.Y.-D. Wang , H. Tian , A.D. Stoica , X.-L. Wang , P.K. Liaw , and J.W. Richardson : The development of grain-orientation-dependent residual stressess in a cyclically deformed alloy. Nat. Mater. 2, 101 (2003).

236.W. Ludwig , S. Schmidt , E.M. Lauridsen , and H.F. Poulsen : X-ray diffraction contrast tomography: A novel technique for three-dimensional grain mapping of polycrystals. I. Direct beam case. J. Appl. Cryst. 41, 302 (2008).

237.G. Johnson , A. King , M.G. Honnicke , J. Marrow , and W. Ludwig : x-ray diffraction contrast tomography: A novel technique for three-dimensional grain mapping of polycrystals. II. The combined case. J. Appl. Cryst. 41, 310 (2008).

238.S.F. Nielsen , H.F. Poulsen , F. Beckmann , C. Thorning , and J.A. Wert : Measurements of plastic displacement gradient components in three dimensions using marker particles and synchrotron X-ray absorption microtomography. Acta Mater. 51, 2407 (2003).

240.X.-L. Wang , T.M. Holden , A.D. Stoica , K. An , H.D. Skorpenske , A.B. Jones , G.Q. Rennich , and E.B. Iverson : First results from the VULCAN diffractometer at the SNS. Mater. Sci. Forum 652, 105 (2010).

243.M. De Graef , M.V. Kral , and M. Hillert : A modern 3-D view of an “Old” pearlite colony. JOM 58, 25 (2006).

244.A. Mangan , P.D. Lauren , and G.J. Shiflet : Three-dimensional reconstruction of Widmanstatten plates in Fe-12.3Mn-0.8C. J. Microsc. 188, 36 (1997).

245.A. Tewari , A.M. Gokhale , and R.M. German : Effect of gravity on three-dimensional coordination number distribution in liquid phase sintered microstructures. Acta Mater. 47, 3721 (1999).

246.D.M. Saylor , B.S. El-Dasher , T. Sano , and G.S. Rohrer : Distribution of grain boundaries in SrTiO3 as a function of five macroscopic parameters. J. Am. Ceram. Soc. 87, 670 (2004).

247.D.M. Saylor , A. Morawiec , and G.S. Rohrer : Distribution of grain boundaries in magnesia as a function of five macroscopic parameters. Acta Mater. 51, 3663 (2003).

248.D.J. Rowenhorst , A. Gupta , C.R. Feng , and G. Spanos : 3D crystallographic and morphological analysis of coarse martensite: Combining EBSD and serial sectioning. Scr. Mater. 55, 11 (2006).

250.T.L. Wolfsdorf , W.H. Bender , and P.W. Voorhees : The morphology of high volume fraction solid-liquid mixtures: An application of microstructural tomography. Acta Mater. 45, 2279 (1997).

251.M. Li , S. Ghosh , T.N. Rouns , H. Weiland , O. Richmond , and W. Hunt : Serial sectioning method in the construction of 3-D microstructures for particle-reinforced MMCs. Mater. Charact. 41, 81 (1998).

252.M.V. Kral , M.A. Mangan , G. Spanos , and R.O. Rosenberg : Three-dimensional analysis of microstructures. Mater. Charact. 45, 17 (2000).

253.M.A. Wall , A.J. Schwartz , and L. Nguyen : A high-resolution serial sectioning specimen preparation technique for application to electron backscatter diffraction. Ultramicroscopy 88, 73 (2001).

254.J.E. Spowart , H.M. Mullens , and B.T. Puchala : Collecting and analyzing microstructures in three dimensions: A fully automated approach. JOM 55, 35 (2003).

255.J. Konrad , S. Zaefferer , and D. Raabe : Investigation of orientation gradients around a hard Laves particle in a warm-rolled Fe3Al-based alloy using a 3D EBSD-FIB technique. Acta Mater. 54, 1369 (2006).

256.J. Michael and L. Giannuzzi : Improved EBSD sample preparation via low energy Ga+ FIB ion milling. Microsc. Microanal. 13, 926 (2007).

257.J.R. Wilson , W. Kobsiriphat , R. Mendoza , H.Y. Chen , J.M. Hiller , D.J. Miller , K. Thornton , P.W. Voorhees , S.B. Adler , and S.A. Barnett : Three-dimensional reconstruction of a solid-oxide fuel-cell anode. Nat. Mater. 5, 541 (2006).

258.D. Gostovic , J.R. Smith , D.P. Kundinger , K.S. Jones , and E.D. Wachsman : Three-dimensional reconstruction of porous LSCF cathodes. Electrochem. Solid State Lett. 10, B214 (2007).

262.M. Groeber , S. Ghosh , M.D. Uchic , and D.M. Dimiduk : A framework for automated analysis and simulation of 3D polycrystalline micro structures. Part 1: Statistical characterization. Acta Mater. 56, 1257 (2008).

265.F.J. Humphreys : A new analysis of recovery, recrystallisation, and grain growth. Mater. Sci. and Tech. 15, 37 (1999).

266.O.V. Rofman , P.S. Bate , I. Brough , and F.J. Humphreys : Study of dynamic grain growth by electron microscopy and EBSD. J. Microsc. Oxford 233, 432 (2009).

267.S. Tsurekawa , T. Fukino , and T. Matsuzaki : In-situ SEM/EBSD observation of abnormal grain growth in electrodeposited nanocrystalline nickel. Int. J. Mater. Res. 100, 800 (2009).

268.M.L. Taheri , J.T. Sebastian , B.W. Reed , D.N. Seidman , and A.D. Rollett : Site-specific atomic scale analysis of solute segregation to a coincidence site lattice grain boundary. Ultramicroscopy 110, 278 (2009).

269.G.G.E. Seward , S. Celotto , D.J. Prior , J. Wheeler , and R.C. Pond : In situ SEM-EBSD observations of the hcp to bcc phase transformation in commercially pure titanium. Acta Mater. 52, 821 (2004).

270.Y. Huang , F.J. Humphreys , and I. Brough : The application of a hot deformation SEM stage, backscattered electron imaging and EBSD to the study of thermomechanical processing. J. Microsc. Oxford 208, 18 (2002).

271.D. Raabe , M. Sachtleber , H. Weiland , G. Scheele , and Z.S. Zhao : Grain-scale micromechanics of polycrystal surfaces during plastic straining. Acta Mater. 51, 1539 (2003).

272.C. Niederberger , W.M. Mook , X. Maeder and J. Michler : In situ electron backscatter diffraction (EBSD) during the compression of micropillars. Mater. Sci. Eng. A Struct. 527, 4306 (2010).

273.S.J. Dillon and G.S. Rohrer : Characterization of the grain-boundary character and energy distributions of yttria using automated serial sectioning and EBSD in the FIB. J. Am. Ceram. Soc. 92, 1580 (2009).

274.J. Li , S.J. Dillon , and G.S. Rohrer : Relative grain boundary area and energy distributions in nickel. Acta Mater. 57, 4304 (2009).

275.S.J. Dillon and G.S. Rohrer : Mechanism for the development of anisotropic grain boundary character distributions during normal grain growth. Acta Mater. 57, 1 (2009).

277.J. Kacher , C. Landon , B.L. Adams , and D. Fullwood : Bragg’s Law diffraction simulations for electron backscatter diffraction analysis. Ultramicroscopy 109, 1148 (2009).

278.P.S. Karamched and A.J. Wilkinson : High resolution electron back-scatter diffraction analysis of thermally and mechanically induced strains near carbide inclusions in a superalloy. Acta Mater. 59, 263 (2011).

279.D.J. Dingley , A.J. Wilkinson , G. Meaden , and P.S. Karamched : Elastic strain tensor measurement using electron backscatter diffraction in the SEM. J. Electron Microsc. (Tokyo) 59, S155 (2010).

281.U. Martin and M. Heilmaier : Novel dispersion strengthened metals by mechanical alloying. Adv. Eng. Mater. 6, 515 (2004).

282.M.K. Miller , D.T. Hoelzer , E.A. Kenik , and K.F. Russell : Stability of ferritic MA/ODS alloys at high temperatures. Intermetallics 13, 387 (2005).

283.J.H. Schneibel , C.T. Liu , M.K. Miller , M.J. Mills , P. Sarosi , M. Heilmaier , and D. Sturm : Ultrafine-grained nanocluster-strengthened alloys with unusually high creep strength. Scr. Mater. 61, 793 (2009).

284.C.L. Fu , M. Krcmar , G.S. Painter , and X.Q. Chen : Vacancy mechanism of high oxygen solubility and nucleation of stable oxygen-enriched clusters in Fe. Phys. Rev. Lett. 99, 225502 (2007).

285.J. Xu , C.T. Liu , M.K. Miller , and H.M. Chen : Nanocluster-associated vacancies in nanocluster-strengthened ferritic steel as seen via positron-lifetime spectroscopy. Phys. Rev. B 79, 020204(R) (2009).

286.I. Arslan , E.A. Marquis , M. Homer , M.A. Hekmaty , and N.C. Bartelt : Towards better 3-D reconstructions by combining electron tomography and atom-probe tomography. Ultramicroscopy 108, 1579 (2008).

287.L. Yang , M.K. Miller , X.L. Wang , C.T. Liu , A.D. Stoica , D. Ma , J. Almer , and D. Shi : Nanoscale solute partitioning in bulk metallic glasses. Adv. Mater. (Deerfield Beach Fla.) 21, 305 (2009).

288.A. Kulkarni , S. Mehraeen , B.W. Reed , N.L. Okamoto , N.D. Browning , and B.C. Gates : Nearly uniform decaosmium clusters supported on MgO: Characterization by x-ray absorption spectroscopy and scanning transmission electron microscopy. J. Phys. Chem. C 113, 13377 (2009).

289.J.F. Nye : Some geometrical relations in dislocated crystals. Acta Metall. 1, 153 (1953).

290.B.S. El-Dasher , B.L. Adams , and A.D. Rollett : Viewpoint: Experimental recovery of geometrically necessary dislocation density in polycrystals. Scr. Mater. 48, 141 (2003).

291.D.P. Field , K.R. Magid , I.N. Mastorakos , J.N. Florando , D.H. Lassila , and J.W. Morris : Mesoscale strain measurement in deformed crystals: A comparison of x-ray microdiffraction with electron backscatter diffraction. Philos. Mag. 90, 1451 (2010).

292.B. Jakobsen , H.F. Poulsen , U. Lienert , J. Almer , S.D. Shastri , H.O. Sorensen , C. Gundlach , and W. Pantleon : Formation and subdivision of deformation structures during plastic deformation. Science 312, 889 (2006).

293.B. Jakobsen , H.F. Poulsen , U. Lienert , and W. Pantleon : Direct determination of elastic strains and dislocation densities in individual subgrains in deformation structures. Acta Mater. 55, 3421 (2007).

294.H.A. Padilla , C.D. Smith , J. Lambros , A.J. Beaudoin , and I.M. Robertson : Effects of deformation twinning on energy dissipation in high rate deformed zirconium. Metall. Mater. Trans. A 38, 2916 (2007).

297.Y. Xiang and D.J. Srolovitz : Dislocation climb effects on particle bypass mechanisms. Philos. Mag. 86, 3937 (2006).

298.Y. Xiang , D.J. Srolovitz , L.T. Cheng , and E. Weinan : Level set simulations of dislocation-particle bypass mechanisms. Acta Mater. 52, 1745 (2004).

299.J.S. Robach , I.M. Robertson , B.D. Wirth , and A. Arsenlis : In-situ transmission electron microscopy observations and molecular dynamics simulations of dislocation-defect interactions in ion-irradiated copper. Philos. Mag. 83, 955 (2003).

302.B.D. Wirth , V.V. Bulatov , and T. De La Diaz Rubia : Dislocation-stacking fault tetrahedron interactions in Cu. J. Eng. Mater. Trans. ASME 124, 329 (2002).

303.A.J. Detor , M.K. Miller , and C.A. Schuh : Solute distribution in nanocrystalline Ni-W alloys examined through atom probe tomography. Philos. Mag. 86, 4459 (2006).

304.A.J. Detor , M.K. Miller , and C.A. Schuh : Measuring grain-boundary segregation in nanocrystalline alloys: Direct validation of statistical techniques using atom probe tomography. Philos. Mag. 87, 581 (2007).

305.A.J. Detor and C.A. Schuh : Grain boundary segregation, chemical ordering and stability of nanocrystalline alloys: Atomistic computer simulations in the Ni-W system. Acta Mater. 55, 4221 (2007).

307.M. Hernandez-Mayoral , Z. Yao , M.L. Jenkins , and M.A. Kirk : Heavy-ion irradiations of Fe and Fe-Cr model alloys Part 2: Damage evolution in thin-foils at higher doses. Philos. Mag. 88, 2881 (2008).

308.M.L. Jenkins , Z. Yao , M. Hernandez-Mayoral , and M.A. Kirk : Dynamic observations of heavy-ion damage in Fe and Fe-Cr alloys. J. Nucl. Mater. 389, 197 (2009).

309.M.J. Demkowicz , R.G. Hoagland , and J.P. Hirth : Interface structure and radiation damage resistance in Cu-Nb multilayer nanocomposites. Phys. Rev. Lett. 100, 136102 (2008).

310.K. Hattar , M.J. Demkowicz , A. Misra , I.M. Robertson , and R.G. Hoagland : Arrest of He bubble growth in Cu-Nb multilayer nanocomposites. Scr. Mater. 58, 541 (2008).

311.T. Höchbauer , A. Misra , K. Hattar , and R.G. Hoagland : Influence of interfaces on the storage of ion-implanted He in multilayered metallic composites. J. Appl. Phys. 98, 123516 (2005).

312.A. Misra , M.J. Demkowicz , X. Zhang , and R.G. Hoagland : The radiation damage tolerance of ultra-high strength nanolayered composites. JOM 59, 62 (2007).

313.S. Lozano-Perez , T. Yamada , T. Terachi , M. Schroder , C.A. English , G.D.W. Smith , C.R.M. Grovenor , and B.L. Eyre : Multi-scale characterization of stress-corrosion cracking of cold-worked stainless steels and the influence of Cr content. Acta Mater. 57, 5361 (2009).

315.P.L. Andresen , P.H. Chou , M.M. Morra , J. Lawrence Nelson , and R.B. Rebak : Microstructural and stress-corrosion cracking characteristics of austenitic stainless steels containing silicon. Metall. Mater. Trans. A 40, 2824 (2009).

316.C. Garcia , F. Martin , P. De Tiedra , J.A. Heredero , and M.L. Aparicio : Effects of prior cold work and sensitization heat treatment on chloride stress-corrosion cracking in type 304 stainless steels. Corrosion Sci. 43, 1519 (2001).

318.S. Lozano-Perez , D.W. Saxey , T. Yamada , and T. Terachi : Atom-probe tomography characterization of the oxidation of stainless steel. Scr. Mater. 62, 855 (2010).

319.S. Lozano-Perez , P. Rodrigo , and L. Gontard : Three-dimensional characterization of stress corrosion cracks. J. Nucl. Mater. 408, 289 (2011).

320.S. Nishimura , G. Kobayashi , K. Ohoyama , R. Kanno , M. Yashima , and A. Yamada : Experimental visualization of lithium diffusion in LixFePO4. Nat. Mater. 7, 707 (2008).

323.R. Gemma , T. Al-Kassab , R. Kirchheim , and A. Pundt : APT analyses of deuterium-loaded Fe/V multi-layered films. Ultramicroscopy 109, 631 (2009).

324.J. Takahashia , K. Kawakamia , Y. Kobayashia , and T. Taruib : The first direct observation of hydrogen trapping sites in TiC precipitation-hardening steel through atom probe tomography. Scr. Mater. 63, 261 (2010).

325.Y. Kihn , C. Mirguet , and L. Calmels : EELS studies of Ti-bearing materials and ab initio calculations. J. Electron Spectros. Relat. Phenom. 143, 119 (2005).

326.C.A. Schuh , T.C. Hufnagel , and U. Ramamurty : Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007).

327.N.Q. Vo , R.S. Averback , P. Bellon , and A. Caro : Limits of hardness at the nanoscale: Molecular dynamics simulations. Phys. Rev. B 78, 241402R (2008).

328.M.M.J. Treacy , J.M. Gibson , L. Fan , D.J. Paterson , and I. McNulty : Fluctuation microscopy: A probe of medium range order. Rep. Prog. Phys. 68, 2899 (2005).

329.H.J. Bunge and R.A. Schwarzer : Orientation stereology—A new branch in texture research. Adv. Eng. Mater. 3, 25 (2001).

332.C.A. Schuh and M. Frary : Correlations beyond the nearest-neighbor level in grain boundary networks. Scr. Mater. 54, 1023 (2006).

333.M. Kumar , W.E. King , and A.J. Schwartz : Modifications to the microstructural topology in f.c.c. materials through thermomechanical processing. Acta Mater. 48, 2081 (2000).

334.M. Frary and C.A. Schuh : Grain boundary networks: Scaling laws, preferred cluster structure, and their implications for grain boundary engineering. Acta Mater. 53, 4323 (2005).

335.M. Frary and C.A. Schuh : Connectivity and percolation behaviour of grain boundary networks in three dimensions. Philos. Mag. 85, 1123 (2005).

336.C.A. Schuh , M. Kumar , and W.E. King : Analysis of grain boundary networks and their evolution during grain boundary engineering. Acta Mater. 51, 687 (2003).

337.C.A. Schuh , M. Kumar , and W.E. King : Universal features of grain boundary networks in FCC materials. J. Mater. Sci. 40, 847 (2005).

339.Y. Chen and C.A. Schuh : Percolation of diffusional creep: A new universality class. Phys. Rev. Lett. 98, 035701 (2007).

340.C.D.W. Van Siclen : Intergranular fracture in model polycrystals with correlated distribution of low-angle grain boundaries. Phys. Rev. B 73, 184118 (2006).

341.X.M. Bai , A.F. Voter , R.G. Hoagland , M. Nastasi , and B.P. Uberuaga : Efficient annealing of radiation damage near grain boundaries via interstitial emission. Science 327, 1631 (2010).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords: