Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-25T08:14:24.325Z Has data issue: false hasContentIssue false

Early stages of oxidation of aluminum nitride

Published online by Cambridge University Press:  31 January 2011

Yongjun Geng
Affiliation:
School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164
M. Grant Norton*
Affiliation:
School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164
*
a) Address all correspondence to this author. e-mail: norton@mme.wsu.edu
Get access

Abstract

The early stages of oxidation of aluminum nitride have been studied by transmission electron microscopy and electron diffraction. It has been found that the oxide layer grows by the Stranki–Krastonow mechanism, where an initial uniform layer is followed by island formation. The onset of oxidation occurs at 800 °C and the initial oxide phase that forms is γ–Al2O3, one of the transition aluminas. The orientation relationship between the oxide layer and the underlying nitride is (440)γ∥(1120)AIN and [112]γ∥[0110]AIN.

Type
Materials Communications
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tammann, G., Z. Anorg. Allgem. Chem. 111, 78 (1920).CrossRefGoogle Scholar
2.Cabrera, N. and Mott, N.F., Rep. Prog. Phys. 12, 163 (1948).CrossRefGoogle Scholar
3.Lawless, K.R., Rep. Prog. Phys. 37, 231 (1974).CrossRefGoogle Scholar
4.Frank, F.C. and van der Merwe, J.H., Proc. R. Soc. London Ser. A 198, 205 (1949).Google Scholar
5.Frank, F.C. and van der Merwe, J.H., Proc. R. Soc. London Ser. A 198, 216 (1949).Google Scholar
6.Frank, F.C. and van der Merwe, J.H., Proc. R. Soc. London Ser. A 200, 125 (1949).Google Scholar
7.Finch, G.I. and Quarrell, A.G., Proc. R. Soc. London Ser. A 141, 398 (1933).Google Scholar
8.Finch, G.I. and Quarrell, A.G., Proc. Phys. Soc. 46, 148 (1934).CrossRefGoogle Scholar
9.Volmer, M. and Weber, A., Z. Phys. Chem. 119, 277 (1926).CrossRefGoogle Scholar
10.Mitchell, D.F. and Lawless, K.R., J. Paint Technol. 38, 501 (1966).Google Scholar
11.Milne, R.H. and Howie, A., Phil. Mag. A, 49, 665 (1984).CrossRefGoogle Scholar
12.Yang, J.C., Kolasa, B., Gibson, J.M., and Yeadon, M., Appl. Phys. Lett. 73, 2841 (1998).CrossRefGoogle Scholar
13.Stranski, N. and Krastanow, von L., Akad. Wiss. Lit. Mainz Math.-Natur., K1, IIb 146, 797 (1939).Google Scholar
14.Narasawa, T. and Gibson, W.M., Phys. Rev. Lett. 47, 1459 (1981).CrossRefGoogle Scholar
15.Venables, J.A., Rep. Prog. Phys. 47, 399 (1984).CrossRefGoogle Scholar
16.Batstone, J.L., in Materials Interfaces: Atomic-Level Structure and Properties, edited by Wolf, D. and Yip, S. (Chapman and Hall, London, 1992), p. 316.Google Scholar
17.Tanaka, K-I., Fujita, T., and Okawa, Y., Surf. Sci. 401, L407 (1998).CrossRefGoogle Scholar
18.Milne, R.H., Surf. Sci. 121, 347 (1982).CrossRefGoogle Scholar
19.Norton, M.G., J. Mater. Sci. 26, 2322 (1991).CrossRefGoogle Scholar
20.Brown, A.L. and Norton, M.G., J. Mater. Sci. Lett. 17, 1519 (1998).CrossRefGoogle Scholar
21.Taylor, K.M. and Lenie, C.M., J. Electrochem. Soc. 107, 308 (1962).CrossRefGoogle Scholar
22.Duchesne, D.J., Hipps, K.W., Grasher, B.A., and Norton, M.G., J. Mater. Sci. Lett. (1999, in press).Google Scholar
23.McKernan, S., Norton, M.G., and Carter, C.B., in Electronic Packaging Materials Science, edited by Lillie, E.D., Jaccodine, R.J., Ho, P., and Jackson, K., (Mater. Res. Soc. Symp. Proc. 203, Pittsburgh, PA, 1990), p. 229.Google Scholar
24.Williams, D.B. and Carter, C.B., Transmission Electron Microscopy (Plenum Press, New York, 1996), pp. 444447.CrossRefGoogle Scholar
25.Osborne, E.W. and Norton, M.G., J. Mater. Sci. 33, 3859 (1998).CrossRefGoogle Scholar
26.Pashley, D.W., in Thin Films (American Society of Metals, Metals Park, OH, 1964), pp. 5998.Google Scholar
27.Rooksby, H.P., in X-Ray Identification and Crystal Structures of Clay Minerals, edited by Brindley, G.W. (The Mineralogical Society, London, 1951), pp. 244265.Google Scholar
28.Katnani, A.D. and Papathomas, K.I., J. Vac. Sci. Technol. A 5, 1335 (1987).CrossRefGoogle Scholar