Skip to main content

Effect of Co additions on the phase formation, thermal stability, and mechanical properties of rapidly solidified Ti–Cu-based alloys

  • Piter Gargarella (a1), Simon Pauly (a2), Claudio Shyinti Kiminami (a3) and Jürgen Eckert (a4)

The addition of Co to CuZr-based shape memory bulk metallic glass composites stabilizes the high temperature B2-CuZr and decreases its stacking faulty energy, which promotes an increase in ductility caused by an easier twinning formation. A similar effect is expected for TiCu-based alloys. The present work aims to investigate the effect of Co additions on the phase formation, mechanical properties, and thermal stability of rapidly solidified Ti–Cu-based alloys. Rods of six Ti–Cu-based compositions with different amounts of Co were prepared by Cu-mold suction casting and investigated by X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, dilatometry, and compression tests. The results show that the addition of Co decreases the glass-forming ability of Ti–Cu-based alloys and stabilizes B2 Ti(Cu,Ni,Co) at room temperature. The Co-added alloys exhibit an almost identical phase formation and microstructure, but their mechanical behavior is completely different nonetheless, which is mainly connected with the different composition of the B2 phase. The addition of Co makes the stress-induced martensitic transformation of this phase more difficult, which is one of the main reasons for the increase of the yield strength when a higher amount of Co is added.

Corresponding author
a) Address all correspondence to this author. e-mail:
Hide All

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to

Contributing Editor: Mathias Göken

Hide All
1. Inoue A. and Takeuchi A.: Recent development and application products of bulk glassy alloys. Acta Mater. 59, 2243 (2011).
2. Schuh C.A., Hufnagel T.C., and Ramamurty U.: Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067 (2007).
3. Eckert J., Das J., Pauly S., and Duhamel C.: Processing routes, microstructure and mechanical properties of metallic glasses and their composites. Adv. Eng. Mater. 9, 443 (2007).
4. Hofmann D.C., Suh J-Y., Wiest A., Duan G., Lind M-L., Demetriou M.D., and Johnson W.L.: Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 451, 1085 (2008).
5. Wu Y., Xiao Y., Chen G., Liu C.T., and Lu Z.: Bulk metallic glass composites with transformation-mediated work-hardening and ductility. Adv. Mater. 22, 2770 (2010).
6. Hofmann D.C., Suh J-Y., Wiest A., Lind M-L., Demetriou M.D., and Johnson W.L.: Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility. Proc. Natl. Acad. Sci. U. S. A. 105, 20136 (2008).
7. Das J., Pauly S., Boström M., Durst K., Göken M., and Eckert J.: Designing bulk metallic glass and glass matrix composites in martensitic alloys. J. Alloys Compd. 483, 97 (2009).
8. Pauly S.: Phase formation and mechanical properties of metastable Cu–Zr-based alloys. Ph.D. dissertation, Technisch Universität Dresden, Dresden, 2010.
9. Gargarella P., Pauly S., Song K.K., Hu J., Barekar N.S., Samadi Khoshkhoo M., Teresiak A., Wendrock H., Kühn U., Ruffing C., Kerscher E., and Eckert J.: Ti–Cu–Ni shape memory bulk metallic glass composites. Acta Mater. 61, 151 (2013).
10. Pauly S., Gorantla S., Wang G., Kühn U., and Eckert J.: Transformation-mediated ductility in CuZr-based bulk metallic glasses. Nat. Mater. 9, 473 (2010).
11. Pauly S., Liu G., Wang G., Kühn U., Mattern N., and Eckert J.: Microstructural heterogeneities governing the deformation of Cu47.5Zr47.5Al5 bulk metallic glass composites. Acta Mater. 57, 5445 (2009).
12. Song K.K., Pauly S., Zhang Y., Li R., Gorantla S., Narayanan N., Kühn U., Gemming T., and Eckert J.: Triple yielding and deformation mechanisms in metastable Cu47.5Zr47.5Al5 composites. Acta Mater. 60, 6000 (2012).
13. Javid F.A., Mattern N., Pauly S., and Eckert J.: Martensitic transformation and thermal cycling effect in Cu–Co–Zr alloys. J. Alloys Compd. 509S, S334 (2011).
14. Ma G.Z., Sun B.A., Pauly S., Song K.K., Kühn U., Chen D., and Eckert J.: Effect of Ti substitution on glass-forming ability and mechanical properties of a brittle Cu–Zr–Al bulk metallic glass. Mater. Sci. Eng., A 563, 112 (2013).
15. Pauly S., Das J., Bednarcik J., Mattern N., Kim K.B., Kim D.H., and Eckert J.: Deformation-induced martensitic transformation in Cu–Zr–(Al,Ti) bulk metallic glass composites. Scr. Mater. 60, 431 (2009).
16. Kosiba K., Gargarella P., Pauly S., Kuhn U., and Eckert J.: Predicted glass-forming ability of Cu–Zr–Co alloys and their crystallization behavior. J. Appl. Phys. 113, 123505 (2013).
17. Song K.K., Pauly S., Zhang Y., Gargarella P., Li R., Barekar N.S., Kühn U., Stoica M., and Eckert J.: Strategy for pinpointing the formation of B2 CuZr in metastable CuZr-based shape memory alloys. Acta Mater. 59, 6620 (2011).
18. Wu Y., Zhou D.Q., Song W.L., Wang H., Zhang Z.Y., Ma D., Wang X.L., and Lu Z.P.: Ductilizing bulk metallic glass composite by tailoring stacking fault energy. Phys. Rev. Lett. 109, 245506 (2012).
19. Cacciamani G. and Schuster J.C.: Cu–Ni–Ti (copper–nickel–titanium). In Light Metal Ternary Systems: Phase Diagrams, Crystallographic and Thermodynamic Data, Vol. 11A4, Effenberg G. and Ilyenko S., eds. (Springer Materials—The Landolt-Börnstein Database Heidelberg, Germany, 2006), p. 266283.
20. Gargarella P., Pauly S., Samadi Khoshkhoo M., Kühn U., and Eckert J.: Phase formation and mechanical properties of Ti–Cu–Ni–Zr bulk metallic glass composites. Acta Mater. 65, 259 (2014).
21. Inoue A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).
22. Men H., Pang S.J., and Zhang T.: Glass-forming ability and mechanical properties of Cu50Zr50−x Ti x alloys. Mater. Sci. Eng., A 408, 326 (2005).
23. Wang Y.L. and Xu J.: Ti (Zr)–Cu–Ni bulk metallic glasses with optimal glass-forming ability and their compressive properties. Metall. Trans. 39A, 2990 (2008).
24. Wang Y-L., Ma E., and Xu J.: Bulk metallic glass formation near the TiCu–TiNi pseudo-binary eutectic composition. Philos. Mag. Lett. 88, 319 (2008).
25. Barekar N.S., Pauly S., Kumar R.B., Kühn U., Dhindaw B.K., and Eckert J.: Structure–property relations in bulk metallic Cu–Zr–Al alloys. Mater. Sci. Eng., A 527, 5867 (2010).
26. Lutskaya N.V. and Alisova S.P.: Phase diagram of the TiCu–TiCo–TiNi system. Metally 5, 129 (1992).
27. Mueller M.H. and Knott H.W.: The crystal structures of Ti2Cu, Ti2Ni, Ti4Ni2O, and Ti4Cu2O. Trans. Metall. Soc. AIME 227, 674 (1963).
28. Carow-Watamura U., Louzguine D.V., and Takeuchi A.: Cu–Ni–Ti (243). In Systems from Cr-Fe-P to Si-W-Zr, Vol. 37C3, Kawazoe Y., Carow-Watamura U., and Yu J.Z., eds. (Springer-Verlag Berlin Heidelberg, Berlin, 2011), p. 122128.
30. Zarinejad M. and Liu Y.: Dependence of transformation temperatures of NiTi-based shape-memory alloys on the number and concentration of valence electrons. Adv. Funct. Mater. 18, 2789 (2008).
31. Otsuka K. and Ren X.: Physical metallurgy of Ti–Ni-based shape memory alloys. Prog. Mater. Sci. 50, 511 (2005).
32. Gschneidner K.A. Jr., Ji M., Wang C.Z., Ho K.M., Russell A.M., Mudryk Y., Becker A.T., and Larson J.L.: Influence of the electronic structure on the ductile behavior of B2 CsCl-type AB intermetallics. Acta Mater. 57, 5876 (2009).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 6
Total number of PDF views: 46 *
Loading metrics...

Abstract views

Total abstract views: 174 *
Loading metrics...

* Views captured on Cambridge Core between 12th July 2017 - 16th January 2018. This data will be updated every 24 hours.