Skip to main content

Effect of severe plastic deformation on tensile and fatigue properties of fine-grained magnesium alloy ZK60

  • Alexei Vinogradov (a1)

Complex wrought magnesium-based alloys suffer from poor ductility, strong yield asymmetry, and lower than desired fatigue performance. These unfavourable properties are exacerbated by the heterogeneity of the microstructure and strong texture forming in Mg alloys during conventional thermo-mechanical processing. For the user, severe plastic deformation (SPD) increases flexibility in tailoring the microstructures and selecting the properties to be emphasized in wrought Mg alloys. The effect of SPD by hot multiaxial forging and equal channel angular pressing on the formation of fine grain microstructure and on resultant mechanical properties is discussed. It is demonstrated that SPD is capable of substantial enhancement in ductility and tensile strength which gives rise to concurrent improvement of both low- and high-cycle fatigue properties. The main message of this overview is that the full potential for improving fatigue performance of Mg alloys can be taken advantage of by way of comprehensive understanding the role of the individual effects associated with the SPD-induced microstructures and textures.

Corresponding author
a) Address all correspondence to this author. e-mail:
Hide All

Contributing Editor: Yuntian Zhu

Dedicated to Professor Dr. Haël Mughrabi on the occasion of his 80th birthday. It is my pleasure and honor to dedicate this paper to Professor Haël Mughrabi, who has been a mentor and a colleague to me over the years, in appreciation of his outstanding contributions and accomplishments in the area of fatigue of advanced materials.

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

Hide All
1. Mughrabi, H.: On the grain-size dependence of metal fatigue: Outlook on the fatigue of ultrafine-grained metals. In Investigations and Applications of Severe Plastic Deformation, Lowe, T. and Valiev, R., eds. (Springer, Netherlands, Amsterdam, 2000); p. 241.
2. Kunz, L., Lukas, P., and Svoboda, A.: Fatigue strength, microstructural stability and strain localization in ultrafine-grained copper. Mater. Sci. Eng., A 424(1–2), 97 (2006).
3. Höppel, H.W., Zhou, Z.M., Mughrabi, H., and Valiev, R.Z.: Microstructural study of the parameters governing coarsening and cyclic softening in fatigued ultrafine-grained copper. Philos. Mag. A 82(9), 1781 (2002).
4. Vinogradov, A. and Hashimoto, S.: Multiscale phenomena in fatigue of ultra-fine grain materials—An overview. Mater. Trans., JIM 42(1), 74 (2001).
5. May, J., Dinkel, M., Amberger, D., Höppel, H.W., and Göken, M.: Mechanical properties, dislocation density and grain structure of ultrafine-grained aluminum and aluminum–magnesium alloys. Metall. Mater. Trans. A 38(9), 1941 (2007).
6. Höppel, H.W., Kautz, M., Xu, C., Murashkin, M., Langdon, T.G., Valiev, R.Z., and Mughrabi, H.: An overview: Fatigue behaviour of ultrafine-grained metals and alloys. Int. J. Fatigue 28(9), 1001 (2006).
7. Patlan, V., Higashi, K., Kitagawa, K., Vinogradov, A., and Kawazoe, M.: Cyclic response of fine grain 5056 Al–Mg alloy processed by equal-channel angular pressing. Mater. Sci. Eng., A 319, 587 (2001).
8. Chung, C.S., Kim, J.K., Kim, H.K., and Kim, W.J.: Improvement of high-cycle fatigue life in a 6061 Al alloy produced by equal channel angular pressing. Mater. Sci. Eng., A 337(1–2), 39 (2002).
9. Vinogradov, A., Washikita, A., Kitagawa, K., and Kopylov, V.I.: Fatigue life of fine-grain Al–Mg–Sc alloys produced by equal-channel angular pressing. Mater. Sci. Eng., A 349(1–2), 318 (2003).
10. Murashkin, M., Sabirov, I., Prosvirnin, D., Ovid’ko, I.A., Terentiev, V., Valiev, R.Z., and Dobatkin, S.V.: Fatigue behavior of an ultrafine-grained Al–Mg–Si alloy processed by high-pressure torsion. Metals 5(2), 578 (2015).
11. Chen, L.J., Ma, C.Y., Stoica, G.M., Liaw, P.K., Xu, C., and Langdon, T.G.: Mechanical behavior of a 6061 Al alloy and an Al2O3/6061 Al composite after equal-channel angular processing. Mater. Sci. Eng., A 410–411, 472 (2005).
12. Vinogradov, A., Ishida, T., Kitagawa, K., and Kopylov, V.I.: Effect of strain path on structure and mechanical behavior of ultrafine grain Cu–Cr alloy produced by equal-channel angular pressing. Acta Mater. 53(8), 2181 (2005).
13. Vinogradov, A., Patlan, V., Suzuki, Y., Kitagawa, K., and Kopylov, V.I.: Structure and properties of ultra-fine grain Cu–Cr–Zr alloy produced by equal-channel angular pressing. Acta Mater. 50(7), 1639 (2002).
14. Xu, C.Z., Wang, Q.J., Zheng, M.S., Zhu, J.W., Li, J.D., Huang, M.Q., Jia, Q.M., and Du, Z.Z.: Microstructure and properties of ultra-fine grain Cu–Cr alloy prepared by equal-channel angular pressing. Mater. Sci. Eng., A 459(1–2), 303 (2007).
15. Vinogradov, A., Stolyarov, V.V., Hashimoto, S., and Valiev, R.Z.: Cyclic behavior of ultrafine-grain titanium produced by severe plastic deformation. Mater. Sci. Eng., A 318(1–2), 163 (2001).
16. Semenova, I., Valiev, R., Yakushina, E., Salimgareeva, G., and Lowe, T.: Strength and fatigue properties enhancement in ultrafine-grained Ti produced by severe plastic deformation. J. Mater. Sci. 43(23), 7354 (2008).
17. Zherebtsov, S., Salishchev, G., Galeyev, R., and Maekawa, K.: Mechanical properties of Ti–6Al–4V titanium alloy with submicrocrystalline structure produced by severe plastic deformation. Mater. Trans. 46(9), 2020 (2005).
18. Niendorf, T., Canadinc, D., Maier, H.J., Karaman, I., and Sutter, S.G.: On the fatigue behavior of ultrafine-grained interstitial-free steel. Int. J. Mater. Res. 97(10), 1328 (2006).
19. Ueno, H., Kakihata, K., Kaneko, Y., Hashimoto, S., and Vinogradov, A.: Enhanced fatigue properties of nanostructured austenitic SUS 316L stainless steel. Acta Mater. 59(18), 7060 (2011).
20. Rhee, K., Lapovok, R., and Thomson, P.F.: The influence of severe plastic deformation on the mechanical properties of AA6111. J. Met. 57(5), 62 (2005).
21. Lapovok, R., Loader, C., Dalla Torre, F.H., and Semiatin, S.L.: Microstructure evolution and fatigue behavior of 2124 aluminum processed by ECAE with back pressure. Mater. Sci. Eng., A 425(1–2), 36 (2006).
22. Roven, H.J., Nesboe, H., Werenskiold, J.C., and Seibert, T.: Mechanical properties of aluminium alloys processed by SPD: Comparison of different alloy systems and possible product areas. Mater. Sci. Eng., A 410, 426 (2005).
23. Patlan, V., Vinogradov, A., Higashi, K., and Kitagawa, K.: Overview of fatigue properties of fine grain 5056 Al–Mg alloy processed by equal-channel angular pressing. Mater. Sci. Eng., A 300(1–2), 171 (2001).
24. Saitova, L., Semenova, I., Hoppel, H.W., Valiev, R., and Goken, M.: Enhanced superplastic deformation behavior of ultrafine-grained Ti–6Al–4V alloy. Materialwiss. Werkstofftech. 39(4–5), 367 (2008).
25. Niendorf, T., Canadinc, D., Maier, H.J. and Karaman, I.: The role of grain size and distribution on the cyclic stability of titanium Scripta Materialia. 60(5), 344 (2009).
26. Mouritz, A.P.: Introduction to Aerospace Materials (Woodhead Publishing, Cambridge, U.K., 2012).
27. Joost, W.J. and Krajewski, P.E.: Towards magnesium alloys for high-volume automotive applications. Scr. Mater. 128, 107 (2017).
28. Kainer, K.U.: Magnesium Alloys and Their Applications (Wiley-VCH, Weinheim, Germany, 2000).
29. Mordike, B.L. and Ebert, T.: Magnesium—Properties-applications-potential. Mater. Sci. Eng., A 302(1), 37 (2001).
30. Hirsch, J. and Al-Samman, T.: Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications. Acta Mater. 61(3), 818 (2013).
31. Yoo, M.: Slip, twinning, and fracture in hexagonal close-packed metals. Metall. Mater. Trans. A 12(3), 409 (1981).
32. Lou, X.Y., Li, M., Boger, R.K., Agnew, S.R., and Wagoner, R.H.: Hardening evolution of AZ31B Mg sheet. Int. J. Plast. 23(1), 44 (2007).
33. Taylor, G.I.: Plastic strain in metals. J. Inst. Met. LXII, 307 (1938).
34. Christian, J.W. and Mahajan, S.: Deformation twinning. Prog. Mater. Sci. 39(1–2), 1 (1995).
35. Potzies, C. and Kainer, K.U.: Fatigue of magnesium alloys. Adv. Eng. Mater. 6(5), 281 (2004).
36. Xiong, Y. and Jiang, Y.: Fatigue of ZK60 magnesium alloy under uniaxial loading. Int. J. Fatigue 64, 74 (2014).
37. Dallmeier, J., Huber, O., Saage, H., and Eigenfeld, K.: Uniaxial cyclic deformation and fatigue behavior of AM50 magnesium alloy sheet metals under symmetric and asymmetric loadings. Mater. Des. 70, 10 (2015).
38. Matsuzuki, M. and Horibe, S.: Analysis of fatigue damage process in magnesium alloy AZ31. Mater. Sci. Eng., A 504(1–2), 169 (2009).
39. Hasegawa, S., Tsuchida, Y., Yano, H., and Matsui, M.: Evaluation of low cycle fatigue life in AZ31 magnesium alloy. Int. J. Fatigue 29(9–11), 1839 (2007).
40. Begum, S., Chen, D.L., Xu, S., and Luo, A.A.: Low cycle fatigue properties of an extruded AZ31 magnesium alloy. Int. J. Fatigue 31(4), 726 (2009).
41. Chen, C., Liu, T., Lv, C., Lu, L., and Luo, D.: Study on cyclic deformation behavior of extruded Mg–3Al–1Zn alloy. Mater. Sci. Eng., A 539(0), 223 (2012).
42. Lin, X.Z. and Chen, D.L.: Strain controlled cyclic deformation behavior of an extruded magnesium alloy. Mater. Sci. Eng., A 496(1–2), 106 (2008).
43. Valiev, R.Z., Estrin, Y., Horita, Z., Langdon, T.G., Zehetbauer, M.J., and Zhu, Y.T.: Producing bulk ultrafine-grained materials by severe plastic deformation. J. Met. 58(4), 33 (2006).
44. Estrin, Y. and Vinogradov, A.: Fatigue behaviour of light alloys with ultrafine grain structure produced by severe plastic deformation: An overview. Int. J. Fatigue 32(6), 898 (2010).
45. Koike, J.: Enhanced deformation mechanisms by anisotropic plasticity in polycrystalline Mg alloys at room temperature. Metall. Mater. Trans. A 36(7), 1689 (2005).
46. Barnett, M.R., Keshavarz, Z., Beer, A.G., and Atwell, D.: Influence of grain size on the compressive deformation of wrought Mg–3Al–1Zn. Acta Mater. 52(17), 5093 (2004).
47. Koike, J., Kobayashi, T., Mukai, T., Watanabe, H., Suzuki, M., Maruyama, K., and Higashi, K.: The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys. Acta Mater. 51(7), 2055 (2003).
48. Figueiredo, R.B., Poggiali, F.S.J., Silva, C.L.P., Cetlin, P.R., and Langdon, T.G.: The influence of grain size and strain rate on the mechanical behavior of pure magnesium. J. Mater. Sci. 51(6), 3013 (2016).
49. Zúberová, Z., Kunz, L., Lamark, T.T., Estrin, Y., and Janeček, M.: Fatigue and tensile behavior of cast, hot-rolled, and severely plastically deformed AZ31 magnesium alloy. Metall. Mater. Trans. A 38(9), 1934 (2007).
50. Lapovok, R., Thomson, P.F., Cottam, R., and Estrin, Y.: The effect of warm equal channel angular extrusion on ductility and twinning in magnesium alloy ZK60. Mater. Trans. 45(7), 2192 (2004).
51. Wu, L., Stoica, G.M., Liao, H.H., Agnew, S.R., Payzant, E.A., Wang, G.Y., Fielden, D.E., Chen, L., and Liaw, P.K.: Fatigue-property enhancement of magnesium alloy, AZ31B, through equal-channel-angular pressing. In Annual Meeting of the Minerals, Metals and Materials Society (Minerals Metals Materials Society, Warrendale, USA, 2007); p. 2283.
52. Figueiredo, R.B. and Langdon, T.G.: Record superplastic ductility in a magnesium alloy processed by equal-channel angular pressing. Adv. Eng. Mater. 10(1–2), 37 (2008).
53. Figueiredo, R.B., Cetlin, P.R., and Langdon, T.G.: The processing of difficult-to-work alloys by ECAP with an emphasis on magnesium alloys. Acta Mater. 55(14), 4769 (2007).
54. Yamashita, A., Horita, Z., and Langdon, T.G.: Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation. Mater. Sci. Eng., A 300(1–2), 142 (2001).
55. Mukai, T., Yamanoi, M., Watanabe, H., and Higashi, K.: Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure. Scr. Mater. 45(1), 89 (2001).
56. Orlov, D., Raab, G., Lamark, T.T., Popov, M., and Estrin, Y.: Improvement of mechanical properties of magnesium alloy ZK60 by integrated extrusion and equal channel angular pressing. Acta Mater. 59(1), 375 (2011).
57. Orlov, D., Ralston, K.D., Birbilis, N., and Estrin, Y.: Enhanced corrosion resistance of Mg alloy ZK60 after processing by integrated extrusion and equal channel angular pressing. Acta Mater. 59(15), 6176 (2011).
58. Vinogradov, A., Orlov, D., and Estrin, Y.: Improvement of fatigue strength of a Mg–Zn–Zr alloy by integrated extrusion and equal-channel angular pressing. Scr. Mater. 67(2), 209 (2012).
59. Zheng, R., Bhattacharjee, T., Shibata, A., Sasaki, T., Hono, K., Joshi, M., and Tsuji, N.: Simultaneously enhanced strength and ductility of Mg–Zn–Zr–Ca alloy with fully recrystallized ultrafine grained structures. Scr. Mater. 131, 1 (2017).
60. Torbati-Sarraf, S.A., Sabbaghianrad, S., Figueiredo, R.B., and Langdon, T.G.: Orientation imaging microscopy and microhardness in a ZK60 magnesium alloy processed by high-pressure torsion. J. Alloys Compd. 712, 185 (2017).
61. Agnew, S.R., Mehrotra, P., Lillo, T.M., Stoica, G.M., and Liaw, P.K.: Texture evolution of five wrought magnesium alloys during route A equal channel angular extrusion: Experiments and simulations. Acta Mater. 53(11), 3135 (2005).
62. Agnew, S.R., Horton, J.A., Lillo, T.M., and Brown, D.W.: Enhanced ductility in strongly textured magnesium produced by equal channel angular processing. Scr. Mater. 50(3), 377 (2004).
63. Asqardoust, S., Zarei Hanzaki, A., Abedi, H.R., Krajnak, T., and Minárik, P.: Enhancing the strength and ductility in accumulative back extruded WE43 magnesium alloy through achieving bimodal grain size distribution and texture weakening. Mater. Sci. Eng., A 698, 218 (2017).
64. Fatemi, S.M., Zarei-Hanzaki, A., and Cabrera, J.M.: Microstructure, texture, and tensile properties of ultrafine/nano-grained magnesium alloy processed by accumulative back extrusion. Metall. Mater. Trans. A 48(5), 2563 (2017).
65. Estrin, Y. and Vinogradov, A.: Extreme grain refinement by severe plastic deformation: A wealth of challenging science. Acta Mater. 61(3), 782 (2013).
66. Yurchenko, N.Y., Stepanov, N.D., Salishchev, G.A., Rokhlin, L.L., and Dobatkin, S.V.: Effect of multiaxial forging on microstructure and mechanical properties of Mg–0.8Ca alloy. IOP Conf. Ser.: Mater. Sci. Eng. 63(1), 012075 (2014).
67. Nugmanov, D.R., Sitdikov, O.S., and Markushev, M.V.: Microstructure evolution in MA14 magnesium alloy under multi-step isothermal forging. J. Mater. Sci. Lett. 1, 213 (2011).
68. Miura, H., Yang, X., and Sakai, T.: Ultrafine grain evolution in Mg alloys, AZ31, AZ61, AZ91 by multi directional forging. Rev. Adv. Mater. Sci. 33(1), 92 (2013).
69. Miura, H., Yang, X., and Sakai, T.: Evolution of ultra-fine grains in AZ31 and AZ61 Mg alloys during multi directional forging and their properties. Mater. Trans. 49(5), 1015 (2008).
70. Kainer, K.U.: Magnesium Alloys and Technology (DGM: Wiley-VCH, Weinheim, Germany, 2003).
71. Shahzad, M. and Wagner, L.: Thermo-mechanical methods for improving fatigue performance of wrought magnesium alloys. Fatigue Fract. Eng. Mater. Struct. 33(4), 221 (2010).
72. Müller, J., Janeček, M., Yi, S., Čížek, J., and Wagner, L.: Effect of equal channel angular pressing on microstructure, texture, and high-cycle fatigue performance of wrought magnesium alloys. Int. J. Mater. Res. 100(6), 838 (2009).
73. Shahzad, M., Eliezer, D., Gan, W.M., Yi, S.B., and Wagner, L.: Influence of extrusion temperature on microstructure, texture and fatigue performance of AZ80 and ZK60 magnesium alloys. Mater. Sci. Forum 561–565, 187 (2007).
74. Liu, W., Dong, J., Zhang, P., Yao, Z., Zhai, C., and Ding, W.: High cycle fatigue behavior of as-extruded ZK60 magnesium alloy. J. Mater. Sci. 44(11), 2916 (2009).
75. Miura, H., Yu, G., and Yang, X.: Multi-directional forging of AZ61Mg alloy under decreasing temperature conditions and improvement of its mechanical properties. Mater. Sci. Eng., A 528(22–23), 6981 (2011).
76. Wang, C.Y., Wang, X.J., Chang, H., Wu, K., and Zheng, M.Y.: Processing maps for hot working of ZK60 magnesium alloy. Mater. Sci. Eng., A 464(1–2), 52 (2007).
77. Homma, T., Kunito, N., and Kamado, S.: Fabrication of extraordinary high-strength magnesium alloy by hot extrusion. Scr. Mater. 61(6), 644 (2009).
78. Kamado, S. and Kojima, Y.: Development of magnesium alloys with high performance. Mater. Sci. Forum 546–549, 55 (2007).
79. Al-Samman, T. and Gottstein, G.: Dynamic recrystallization during high temperature deformation of magnesium. Mater. Sci. Eng., A 490(1–2), 411 (2008).
80. Shimizu, I.: A stochastic model of grain size distribution during dynamic recrystallization. Philos. Mag. A 79(5), 1217 (1999).
81. Bergmann, R.B. and Bill, A.: On the origin of logarithmic-normal distributions: An analytical derivation, and its application to nucleation and growth processes. J. Cryst. Growth 310(13), 3135 (2008).
82. Figueiredo, R.B. and Langdon, T.G.: Principles of grain refinement and superplastic flow in magnesium alloys processed by ECAP. Mater. Sci. Eng., A 501(1–2), 105 (2009).
83. Mughrabi, H. and Höppel, H.W.: Cyclic deformation and fatigue properties of very fine-grained metals and alloys. Int. J. Fatigue 32(9), 1413 (2010).
84. Höppel, H.W., Korn, M., Lapovok, R., and Mughrabi, H.: Bimodal grain size distributions in UFG materials produced by SPD: Their evolution and effect on mechanical properties. J. Phys.: Conf. Ser. 240(1), 012147 (2010).
85. Lapovok, R., Estrin, Y., Popov, M.V., and Langdon, T.G.: Enhanced superplasticity in a magnesium alloy processed by equal-channel angular pressing with a back-pressure. Adv. Eng. Mater. 10(5), 429 (2008).
86. Lapovok, R., Cottam, R., Thomson, P., and Estrin, Y.: Extraordinary superplastic ductility of magnesium alloy ZK60. J. Mater. Res. 20(6), 1375 (2005).
87. Jain, A., Duygulu, O., Brown, D.W., Tomé, C.N., and Agnew, S.R.: Grain size effects on the tensile properties and deformation mechanisms of a magnesium alloy AZ31B sheet. Mater. Sci. Eng., A 486(1–2), 545 (2008).
88. Razavi, S.M., Foley, D.C., Karaman, I., Hartwig, K.T., Duygulu, O., Kecskes, L.J., Mathaudhu, S.N., and Hammond, V.H.: Effect of grain size on prismatic slip in Mg–3Al–1Zn alloy. Scr. Mater. 67(5), 439 (2012).
89. Ding, S.X., Chang, C.P., and Kao, P.W.: Effects of processing parameters on the grain refinement of magnesium alloy by equal-channel angular extrusion. Metall. Mater. Trans. A 40A(2), 415 (2009).
90. Agnew, S.R., Stoica, G.M., Chen, L.J., Lillo, T.M., Macheret, J., and Liaw, P.K.: Equal channel angular processing of magnesium alloys. In TMS Annual Meeting (The Minerals, Metals and Materials Society, Warrendale, Pennsylvania, 2002); p. 643.
91. Ma, C., Liu, M., Wu, G., Ding, W., and Zhu, Y.: Tensile properties of extruded ZK60–RE alloys. Mater. Sci. Eng., A 349(1–2), 207 (2003).
92. Pekguleryuz, M.O.: 1-Current developments in wrought magnesium alloys. In Advances in Wrought Magnesium Alloys, Bettles, C. and Barnett, M., eds. (Woodhead Publishing, Cambridge, U.K., 2012); p. 3.
93. Nugmanov, D.R., Sitdikov, O.S., and Markushev, M.V.: Texture and anisotropy of yield strength in multistep isothermally forged Mg–5.8Zn–0.65Zr alloy. IOP Conf. Ser.: Mater. Sci. Eng. 82(1), 012099 (2015).
94. Nugmanov, D.R., Sitdikov, O.S., and Markushev, M.V.: About fine-grain structure forming in bulk magnesium alloy MA14 under multidirectional isothermal forging. Bas. Probl. Mater. Sci. 9(2), 230 (2012).
95. Nugmanov, D.R., Sitdikov, O.S., and Markushev, M.V.: Structure of magnesium alloy MA14 after multistep isothermal forging and subsequent isothermal rolling. Phys. Met. Metallogr. 116(10), 993 (2015).
96. He, Y., Pan, Q., Qin, Y., Liu, X., and Li, W.: Microstructure and mechanical properties of ultrafine grain ZK60 alloy processed by equal channel angular pressing. J. Mater. Sci. 45(6), 1655 (2010).
97. Yang, X.Y., Sun, Z.Y., Xing, J., Miura, H., and Sakai, T.: Grain size and texture changes of magnesium alloy AZ31 during multi-directional forging. Trans. Nonferrous Met. Soc. China 18, S200 (2008).
98. Suresh, S.: Fatigue of Materials (Cambridge University Press, Cambridge, U.K., 1991).
99. Höppel, H.W., Mughrabi, H., and Vinogradov, A.: Fatigue Properties of Bulk Nanostructured Materials (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2009).
100. Kulyasova, O.B., Islamgaliev, R.K., Zhao, Y., and Valiev, R.Z.: Enhancement of the mechanical properties of an Mg–Zn–Ca alloy using high-pressure torsion. Adv. Eng. Mater. 17(12), 1738 (2015).
101. Kunz, L. and Fintová, S.: Fatigue behaviour of AZ91 magnesium alloy in as-cast and severe plastic deformed conditions. Adv. Mater. Res. 891–892, 397 (2014).
102. Manson, S.S. and Halford, G.R.: Fatigue and Durability of Structural Materials (ASM International Novelty, OH, USA, 2006).
103. Duggan, T.V. and Byrne, J.: Fatigue as a Design Criterion (Macmillan Press Ltd., London, 1977).
104. Esin, A.: A method for correlating different types of fatigue curve. Int. J. Fatigue 2(4), 153 (1980).
105. Lukas, P. and Kunz, L.: Effect of grain-size on the high cycle fatigue behavior of polycrystalline copper. Mater. Sci. Eng. 85(1–2), 67 (1987).
106. Vinogradov, A.: Fatigue limit and crack growth in ultra-fine grain metals produced by severe plastic deformation. J. Mater. Sci. 42(5), 1797 (2007).
107. Klemm, R.: Zyklische Plastizität von Mikro- und Submikrokristallinem Nickel (Technische Universität Dresden, Dresden, Germany, 2004).
108. Vasilev, E., Linderov, M., Nugmanov, D., Sitdikov, O., Markushev, M., and Vinogradov, A.: Fatigue performance of Mg–Zn–Zr alloy processed by hot severe plastic deformation. Metals 5(4), 2316 (2015).
109. Nový, F., Janeček, M., Škorík, V., Müller, J., and Wagner, L.: Very high cycle fatigue behaviour of as-extruded AZ31, AZ80, and ZK60 magnesium alloys. Int. J. Mater. Res. 100(3), 288 (2009).
110. Fouad, Y., Mhaede, M., and Wagner, L.: Effects of mechanical surface treatments on fatigue performance of extruded ZK60 alloy. Fatigue Fract. Eng. Mater. Struct. 34(6), 403 (2011).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed