Skip to main content Accessibility help
×
Home

Effect of the substrate surface condition on the Ni(thin film)/SiC(0001) interfacial reaction

  • Cory R. Dean (a1), Kevin Robbie (a1) and Lynnette D. Madsen (a2)

Abstract

The effect of the substrate surface, structure, and chemistry on the interfacial interaction in Ni(thin film)/SiC was examined, with a focus on the recently discovered formation of a nickel intercalated graphite phase. Very thin Ni films (∼7 nm) were deposited onto heated 6H–SiC(0001) substrates prepared with: (i) an oxide layer, (ii) a surface reconstruction, and (iii) a pristine surface (no oxide and no reconstruction), followed by further annealing. Characterization using x-ray diffraction and atomic force microscopy revealed remarkable differences between the samples in terms of both surface morphology and crystallography. Nickel silicides were present in all samples; however, the phase composition differed depending on sample preparation. Furthermore, the pristine surface was the only one that clearly promoted the growth of the nickel graphite intercalation compound (Ni-GIC).

Copyright

Corresponding author

a)Address all correspondence to this author. Present Address: Department of Physics, McGill University, Montreal, H3A 2T8, QC, Canada e-mail: deanc@physics.mcgill.ca

References

Hide All
1Starke, U.: Atomic structure of hexagonal SiC surfaces. Phys. Status Solidi B 202, 475 1997
2Itoh, A.Matsunami, H.: Single crystal growth of SiC and electronic devices. CRC Crit. Rev. Sol. State Mater. Sci. 22, 111 1997
3Hirai, M., Labis, J., Ohi, A., Kamezawa, C., Morika, Y., Yoshida, K., Kusaka, M.Iwami, M.: Nano-structures of transition-metal (Ti,Ni)/SiC system:photoemission electron microscopy and soft x-ray fluorescence spectroscopy. Appl. Surf. Sci. 216, 187 2003
4Madsen, L.: Formation of ohmic contacts to α-SiC and their impact on devices. J. Electron. Mater. 30, 1353 2001
5Madsen, L., Svedberg, E., Radamson, H., Hallin, C., Hjörvarsson, B., Cabral, C., Jordan-Sweet, J.Lavoie, C.: Phase formation sequence of nickel silicides from rapid thermal annealing of Ni on 4H-SiC. Mater. Sci. Forum 264–268, 799 1998
6Lu, W.: Catalytic graphitization and ohmic contact formation on 4H-SiC. J. Appl. Phys. 93, 5397 2003
7Kestle, A., Wilks, S., Dunstan, P., Pritchard, M.Mawby, P.: Improved Ni/SiC Schottkey diode formation. Electron. Lett. 36, 267 2000
8Kurimoto, E., Toda, T., Sawada, M., Iwani, M.Nakashima, S.: Raman study on the Ni/SiC interface reaction. J. Mater. Sci. 91, 10215 2002
9Fujimura, T.Tanaka, S.: In-situ high temperature x-ray diffraction study of Ni/SiC interface reactions. J. Mater. Sci. 34, 235 1999
10Pai, C., Hanson, M.Lau, S.: X-ray diffraction and ion backscattering study of thermally annealed Pd/SiC and Ni/SiC. J. Appl. Phys. 57, 618 1985
11Ohi, A., Labis, J., Morikawa, Y., Fujiki, T., Hirai, M., Kusaka, M.Iwami, M.: Soft x-ray emission study of thermally treated Ni(film)/4H-SiC(substrate) interface. Appl. Surf. Sci. 190, 366 2002
12Crofton, J., Porter, L.Williams, J.: The physics of ohmic contacts to SiC. Phys. Status Solidi B 202, 581 1997
13Rastegaeva, M., Andreev, A., Petrov, A., Babanin, A., Yagovkina, M.Nikitina, I.: The influence of temperature treatment on the formation of Ni-based Schottkey diodes and ohmic contacts to Ni/6H-SiC. Mater. Sci. Eng., B 46, 254 1997
14Nathan, M.Ahearn, J.: On the nanometer-scale solid-state reactions at thin-film Ni/amorphous SiC and Co/amorphous SiC interfaces. J. Appl. Phys. 70, 811 1991
15Robbie, K., Jemander, S., Lin, N., Hallin, C., Erlandsson, E., Hansson, G.Madsen, L.: Formation of Ni-graphite intercalation compounds on SiC. Phys. Rev. B 64, 155401 2001
16Han, S., Shin, J.Lee, B.: Microstructural interpretation of Ni ohmic contact on n-type 4H-SiC. J. Vac. Sci. Technol., B 20, 1496 2002
17Nikitina, I., Vassilevski, K., Wright, N., Horsfall, A.O’Neill, A.: Formation and role of graphite and nickel silicide in nickel based ohmic contacts to n-type silicon carbide. J. Appl. Phys. 97, 083 709 1 2005
18Hoster, H., Kulakov, M.Bullemer, B.: Morphology and atomic structure of the SiC(000¯1)3× 3 surface reconstruction. Surf. Sci. 382, L658 1997
19Li, L.Tsong, I.: Atomic structures of 6H-SiC(0001) and (000¯1) surfaces. Surf. Sci. 351, 141 1996
20Owman, F.Martensson, P.: STM study of the SiC(0001) √3 × √3 surface. Surf. Sci. 330, L639 1995
21Hisada, Y., Hayashi, K., Kato, K., Aoyama, T., Mukainakano, S.Ichimiya, A.: Reconstruction of 6H-SiC(0001) surfaces studied by scanning tunneling microscopy and refelction high-energy electron diffraction. Jpn. J. Appl. Phys. 40, 2211 2001
22Önneby, C.Pantano, C.: Silicon oxycarbide formation on SiC surfaces and the SiC/SiO2 interface. J. Vac. Sci. Technol., A. 15, 1597 1997
23Schmeisser, D., Batchelor, D., Mikalo, R., Hoffmann, P.Lloyd-Spetz, A.: Oxide growth on SiC(0001) surfaces. Appl. Surf. Sci. 184, 340 2001
24Sakurai, T., Park, J., Nishioka, Y., Nishiyama, M.Kobayashi, H.: SiC/SiO2 structure formed at ∼200 °C by heat treatment at 950 °C having excellent electrical characteristics. Jpn. J. Appl. Phys. 41, 2516 2002
25Edwards, N., Jarrendahl, K., Aspnes, D., Robbie, K., Powell, G., Cobet, C., Esser, N., Richter, W.Madsen, L.: Real-time assessment of selected surface preparation regimens for 4H-SiC surfaces using spectroscopic ellipsometry. Surf. Sci. Lett. 464, L703 2000
26Radtke, C., Baumovi, I.Morais, J.: Initial stages of SiC oxidation investigated by ion scattering and angle-resolved x-ray photoelectron spectroscopies. Appl. Phys. Lett. 78, 3601 2001
27Starke, U., Schardt, J.Franke, M.: Morphology, bond saturation and reconstruction of hexagonal SiC surfaces. Appl. Phys. A 65, 587 1997
28Tanaka, S., Kern, R., Davis, R., Wendelken, J.Xu, J.: Vicinal and on-axis surfaces of 6H-SiC(0001) thin films observed by scanning tunneling microscopy. Surf. Sci. 350, 247 1996
29Takami, J., Naitoh, M., Yokoh, I., Nishigaki, S.Toyama, N.: STM and LEED observation of hydrogen adsorption on the 6H-SiC(0001)3×3 surface. Surf. Sci. 482–485, 359 2001
30Robbie, K., Beydaghyan, G., Brown, T., Dean, C., Adams, J.Buzea, C.: Ultrahigh vacuum glancing angle deposition system for thin films with controlled 3-D nanoscale structure. Rev. Sci. Instrum. 75, 1089 2004
31Inorganic Crystal Structure Database Eggenstein-Leopoldshafen Germany 2002 at available http://icsdweb.fiz-karlsruhe.de
32 Powder Diffraction File. (International Center for Diffraction Data, Swathmore PA, 1994).
33Frank, K.Schubert, K.: Crystal structure of Ni32Si12. Acta Crystallogr. B 27, 916 1971
34Toman, K.: The structure of Ni2Si. Acta Crystallogr. 5, 329 1952
35Howe, J., Rawn, C., Jones, L.Ow, H.: Improved crystallographic data for graphite. Powder. Diffract. 18, 150 2003
36Dresselhaus, M.Dresselhaus, G.: Intercalation compounds of graphite. Adv. Phys. 51, 1 2002
37Roccaforte, F., Via, F., Raineri, V., Musumeci, P., Calcagno, L.Condorelli, G.: Highly reproducible ideal SiC Schottkey rectifiers: Effects of surface preparation and thermal annealing on the Ni/6H-SiC barrier height. Appl. Phys. A 77, 827 2003
38Ryu, K., Kang, M., Kim, Y.Jeon, H.: Low-temperature growth of carbon nanotube by plasma-enhanced chemical vapor deposition using nickel catalyst. J. Appl. Phys. 42, 3578 2003
39Lee, P., Mangelinck, D., Pey, K., Ding, J., Dai, J., Ho, C.See, A.: On the Ni-Si phase transformation with/without native oxide. Microelectron. Eng. 51–52, 583 2000
40Mayer, J., Lin, R.Garfunkel, E.: Surface and bulk diffusion of adsorbed nickel on ultrathin thermally grown silicon dioxide. Surf. Sci. 265, 102 1992
41Dallaporta, H., Liehr, M.Lewis, J.: Silicon dioxide defects induced by metal impurities. Phys. Rev. B 41, 5075 1990
42Pecz, B., Radnoczi, G., Cassette, S., Brylinski, C., Arnodo, C.Noblanc, O.: TEM study of Ni and Ni2Si ohmic contacts to SiC. Diamond Relat. Mater. 6, 1428 1997
43Marsh, H.Warburto, A.: Catalysis of graphitization. J. Appl. Chem. USSR 20, 133 1970
44Yudasaka, M., Tasaka, K., Kikuchi, R., Ohki, Y., Yoshimura, S.Ota, E.: Influence of chemical bond of carbon on Ni catalyzed graphitization. J. Appl. Phys. 81, 7623 1997
45Yudasaka, M., Kikuchi, R., Matsui, T., Tasaka, K.Ohki, Y.: Effect of Ni on graphite thin-film formation from organic materials by chemical vapor deposition. J. Vac. Sci. Technol., A 13, 2142 1995
46Chowalla, M., Teo, K., Ducati, C., Rupesinghe, N., Amaratunga, G., Ferrari, A., Roy, D., Robertson, J.Milne, W.: Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition. J. Appl. Phys. 90, 5308 2001
47Barbangelo, A.Sangiorgi, R.: Interactions between liquid nickel and vitreous carbon. Mater. Sci. Eng., A 156, 217 1992
48Shikin, A., Molodtsov, S., Laubschat, C.Kaindl, G.: Electronic structure of La-intercalated graphite. Phys. Rev. B 51, 13586 1995
49Shikin, A., Prudnikova, G., Fedorov, A.Adamchuk, V.: Chemical reactions under lanthanum adsorption onto graphite and fullerite surface. Surf. Sci. 307–309, 205 1994
50Molodtsov, S., Laubschat, C., Richter, M., Gantz, T.Shikin, A.: Electronic structure of Eu and Yb graphite intercalation compounds. Phys. Rev. B 53, 16621 1996

Keywords

Related content

Powered by UNSILO

Effect of the substrate surface condition on the Ni(thin film)/SiC(0001) interfacial reaction

  • Cory R. Dean (a1), Kevin Robbie (a1) and Lynnette D. Madsen (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.