Skip to main content

Effects of Fe2O3 addition on microstructure and piezoelectric properties of 0.2PZN–0.8PZT ceramics

  • Man-Kang Zhu (a1), Peng-Xian Lu (a1), Yu-Dong Hou (a1), Hao Wang (a1) and Hui Yan (a1)...

In this work, the effect of Fe2O3 addition on the microstructure and piezoelectric properties of Pb(Zn1/3Nb2/3)0.2Ti0.4Zr0.4O3 (0.2PZN–0.8PZT) ceramics were investigated. The studies indicated that the solution limit of Fe2O3 in the lattice of perovskite structure was about 0.1 wt%. Phase analysis shows that small addition of doping Fe2O3 results in the phase evolution from rhombohedral to tetragonal, sharp decrease of the Curie temperature, and remarkable increase of the grain size. Meanwhile, Fe2O3 addition within the solution limit led to the increase of the εr, kp, and d33. It is believed that the variation in the dielectric and piezoelectric properties are closely related to the microstructure change, phase evolution, and tetragonal distortion as Fe2O3 added.

Corresponding author
a)Address all correspondence to this author. e-mail:
Hide All
1Berlincourt, D.: Piezoelectric ceramic compositional development. J. Acoust. Soc. Am. 91, 3034 (1992).
2Smolensky, G.A.: Physical phenomena in ferroelectrics with diffused phase transition. J. Phys. Soc. Jpn. S28, 26 (1970).
3Halliyal, A. and Safari, A.: Synthesis and properties of lead zinc niobate: Pb(Zn1/3Nb2/3)O3-based relaxor ferroelectrics. Ferroelectrics 158, 295 (1994).
4Yamaguchi, H.: Behavior of electric-field-induced strain in PT-PZ-PMN ceramics. J. Am. Ceram. Soc. 82, 1459 (1999).
5Fan, F.Q. and Kim, H.E.: Perovskite stabilization and electromechanical properties of polycrystalline lead zinc niobate–lead zirconate titanate. J. Appl. Phys. 91, 317 (2002).
6Yokosuka, M.: Piezoelectric, dielectric and structural studies on the intermediate composition region of PbZn1/3Nb2/3O3–PbZrO3. Jpn. J. Appl. Phys. 40, 4586 (2001).
7Shaw, J.C., Liu, K.S. and Lin, I.N.: Modification of piezoelectric characteristics of the Pb(Mg,Nb)O3–PbZrO3–PbTiO3 ternary system by aliovalent additives. J. Am. Ceram. Soc. 78, 178 (1995).
8Chen, Y-H., Uchino, K. and Viehland, D.: Substituent effects in 0.65Pb(Mg1/3Nb2/3)O30.35PbTiO3 piezoelectric ceramics. J. Electroceram. 6, 13 (2001).
9Fan, H.Q., Park, G-T. and Choi, J.J.: Preparation and improvement in the electrical properties of lead-zinc-niobate–based ceramics by thermal treatments. J. Mater. Res. 17, 180 (2002).
10Lee, S-H., Yoon, C.B. and Seo, S-B.: Effect of lanthanum on the piezoelectric properties of lead zirconate titanate–lead zinc niobate ceramics. J. Mater. Res. 18, 1765 (2003).
11Yoon, K.H. and Lee, H.R.: Effect of Ba2+ substitution on dielectric and electric-field-induced strain properties of PMN-PZ-PT ceramics. J. Am. Ceram. Soc. 83, 2693 (2000).
12Yoon, S.J., Yoo, S.Y., Moon, J.H., Jung, H.J. and Kim, H.J.: Effects of La2O3 and MnO2 on the piezoelectric properties of 0.02Pb(Y2/3W1/3)O3–0.98Pb(Zr0.52Ti0.48)O3. J. Mater. Res. 11, 348 (1996).
13Yoon, S-J., Joshi, A. and Uchino, K.: Effect of additives on the electromechanical properties of Pb(Zr,Ti)O3–Pb(Y2/3W1/3)O3 ceramics. J. Am. Ceram. Soc. 80, 1035 (1997).
14Hou, Y.D., Yang, Z.P., Gao, F. and Qu, S.B.: Effects of manganese addition on piezoelectric properties of 0.2PZN-0.8PZT ceramics. J. Inorg. Mater. 18, 591 2003 , in Chinese.
15Hou, Y.D., Zhu, M.K., Gao, F., Wang, H., Wang, B., Yan, H. and Tian, C.S.: Effect of MnO2 addition on the structure and electrical properties of Pb(Zn1/3Nb2/3)0.20(Zr0.50Ti0.50)0.80O3 ceramics. J. Am. Ceram. Soc. 87, 847 (2004).
16Hou, Y.D., Cui, B., Zhu, M.K., Wang, H., Wang, B., Yan, H. and Tian, C.S.: Structure and electrical properties of Mn-modified Pb((Zn1/3Nb2/3)0.20(Zr0.50Ti0.50)0.80)O3 ceramics sintered in a protective powder atmosphere. Mater. Sci. Eng. B 111, 77 (2004).
17Swartz, S.L., Shrout, T.R. and Schulze, W.A.: Dielectric properties of pyrochlore lead magnesium niobate. Mater. Res. Bull. 18, 663 (1983).
18Cvetkovic, K. and Petric, A.: Periodic table of the oxides. Am. Ceram. Soc. Bull. 4, 65 (2000).
19Chen, Y.H., Hirose, S., Viehland, D., Takahashi, S. and Uchino, K.: Mn-modified Pb(Mg1/3Nb2/3)O3–PbTiO3 ceramics: Improve mechanical quality factors for high-power transducer applications. Jpn. J. Appl. Phys. 39, 4843 (2000).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 31 *
Loading metrics...

Abstract views

Total abstract views: 89 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st March 2018. This data will be updated every 24 hours.