Skip to main content Accessibility help
×
Home

Efficiency potential and recent activities of high-efficiency solar cells

  • Masafumi Yamaguchi (a1), Hiroyuki Yamada (a2), Yasuhiro Katsumata (a3), Kan-Hua Lee (a1), Kenji Araki (a1) and Nobuaki Kojima (a1)...

Abstract

The present status of R&D for various types of solar cells is presented by overviewing research and development projects for solar cells in Japan as the PV R&D Project Leader of the New Energy and Industrial Technology Development Organization (NEDO) and the Japan Science and Technology Agency (JST). Developments of high-efficiency solar cells such as 44.4% (under concentration) and 37.9% (under 1-sun) InGaP/GaAs/InGaAs 3-junction solar cells by Sharp, 26.6% crystalline Si heterojunction back-contact (HBC) solar cells by Kaneka, 22.3% CIGS solar cells by Solar Frontier have been demonstrated under the NEDO PV R&D Project. 15.0% efficiency has also been attained with 1 cm2 perovskite solar cell by NIMS under the JST Project. This article also presents analytical results for efficiency potential of high-efficiency solar cells based on external radiative efficiency (ERE), open-circuit voltage loss and fill factor loss. Crystalline Si solar cells, GaAs, III–V compound 3-junction and 5-junction, CIGSe, and CdTe solar cells have efficiency potential of 28.5%, 29.7%, 42%, 43%, 26.5%, and 26.5% under 1-sun condition, respectively, by improvements in ERE.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: masafumi@toyota-ti.ac.jp

Footnotes

Hide All

Contributing Editor: Sam Zhang

Footnotes

References

Hide All
1. WBGU (German Advisory Council on Global Change): World in Transition—Towards Sustainable Energy Systems (Earthsan, London, 2003). ISBN 1-85383-882-9, http://www.wbgu.de/.
2. Kurokawa, K., Kawasaki, N., and Ito, M.: Particularity of PV aggregations incorporating with the power grids-development of a power router. In Proceedings the 34th IEEE Photovoltaic Specialists Conference (IEEE, New York, 2009); p. 729.
3. Nakamura, J., Asano, N., Hieda, T., Okamoto, C., Ohnishi, T., Kobayashi, M., Tadokoro, H., Suganuma, R., Matsumoto, Y., Katayama, H., Higashi, K., Kamikawa, T., Kimoto, K., Harada, M., Sakai, T., Shigeta, H., Kuniyoshi, T., Tsujino, K., Zou, L., Koide, N., and Nakamura, K.: Development of heterojunction back contact Si solar cells. In Proceedings 40th IEEE Photovoltaic Specialists Conference (IEEE, New York, 2014); p. 283.
4. Masuko, K., Shigematsu, M., Hashiguchi, T., Fujishima, D., Kai, M., Yoshimura, N., Yamaguchi, T., Ichihashi, Y., Yamanishi, T., Takahama, T., Taguchi, M., Maruyama, E., and Okamoto, S.: Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell. IEEE J. Photovolt. 4, 1433 (2014).
5. Yoshikawa, K., Kawasaki, H., Yoshida, W., Irie, T., Konishi, K., Nakano, K., Uto, T., Adachi, D., Kanemitsu, M., Uzu, H., and Yamamoto, K.: Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 21, 17032 (2017).
6. Nakamura, M., Yoneyama, N., Horiguchi, K., Iwata, Y., Yamaguchi, K., Sugimot, H., and Kato, T.: Recent R&D progress in solar Frontier’s small-sized Cu(InGa)(SeS)2 solar cells. In Proceedings 40th IEEE Photovoltaic Specialists Conference (IEEE, New York, 2014); p. 0107.
7. Sai, H., Matsui, T., Koida, T., Matsubara, K., Kondo, M., Sugiyama, S., Katayama, H., Takeuchi, Y., and Yoshida, I.: Triple-junction thin-film silicon solar cell on periodically textured substrate with a stabilized efficiency of 13.6%. Appl. Phys. Lett. 106, 213902 (2015).
8. Yamaguchi, M. and Luque, A.: Recent results of Europe-Japan collaborative research on concentrator photovoltaics. Energy Procedia 33, 173 (2013).
9. Takamoto, T., Agui, T., Sasaki, K., and Nakaido, K.: World-record efficiency III–V compound multi-junction solar cells. In Technical Digest of the 6th World Conference on Photovoltaic Solar Energy Conversion (2014); p. 1401.
10. Yamaguchi, M., Takamoto, T., Araki, K., and Kojima, N.: Recent results for concentrator photovoltaics in Japan. Jpn. J. Appl. Phys. 55, 04EA05 (2016).
11. Yamaguchi, M.: Creative clean energy generation by using solar energy. Future Mater. 11(3), 52 (2011). (in Japanese).
12. Chen, W., Wu, Y., Yue, Y., Liu, J., Zhang, W., Yang, X., Chen, H., Bi, E., Ashraful, I., Grätzel, M., and Han, L.: Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350, 944 (2015).
13. Ishizaki, K., Zoysa, M.D., Tanaka, Y., Umeda, T., Kawamoto, Y., and Noda, S.: Improved efficiency of ultra-thin µc-Si solar cells with photonic-crystal structures. Opt. Express 23, A1040 (2015).
14. Sai, H., Umishio, H., Matsui, T., Nunomura, S., Takato, H., Kawatsu, T., and Matsubara, K.: Potential of a-Si:H/c-Si heterojunction solar cells with very thin wafers. Presented at the RCPV (Research Center for Photovoltaics, AIST (National Institute of Advanced Industrial Science and Technology)) Symposium 2017, 0614_T04, Tsukuba, Japan, June 13, 14, 2017.
15. Ahrenkiel, R.K.: Minority-Carrier Lifetime in III–V Semiconductors. In Semiconductors and Semimetals, Vol. 39, Ahrenkiel, R.K. and Lundstrom, M.S., eds. (Academic Press, Boston); p. 58.
16. Rau, U.: Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. Phys. Rev. B 76, 085303 (2007).
17. Green, M.A.: Radiative efficiency of state-of-the-art photovoltaic cells. Prog. Photovoltaics 20, 472 (2012).
18. Yao, J., Kirchartz, T., Vezie, M.S., Faist, M.A., Gong, W., He, Z., Wu, H., Troughion, J., Watson, T., Bryant, D., and Nelson, J.: Quantifying losses in open-circuit voltage in solution-processable solar cells. Phys. Rev. Appl. 4, 014020 (2015).
19. Green, M.A., Emery, K., Hishikawa, Y., and Warta, W.: Solar cell efficiency tables (version 36). Prog. Photovoltaics 18, 346 (2010).
20. Green, M.A., Emery, K., Hishikawa, Y., and Warta, W.: Solar cell efficiency tables (version 37). Prog. Photovoltaics 19, 84 (2011).
21. Geisz, J.F., Steiner, M.A., Garcia, I., Kurtz, S.R., and Friedman, D.J.: Enhanced external radiative efficiency for 20.8% efficient single-junction GaInP solar cellls. Appl. Phys. Lett. 103, 041118 (2013).
22. Green, M.A.: Solar Cells (UNSW, Kensington, 1998).
23. Taguchi, M., Yano, A., Tohoda, S., Matsuyama, K., Nakamura, Y., Nishiwaki, T., Fujita, K., and Maruyama, E.: 24.7% record efficiency HIT solar cell on thin silicon wafer. IEEE J. Photovolt. 4, 96 (2014).
24. Zhao, J., Wang, A., Green, M.A., and Ferrazza, F.: Novel 19.8% efficient “honeycomb” textures multicrystalline and 24.4% monocrystalline silicon solar cells. Appl. Phys. Lett. 73, 1991 (1998).
25. Green, M.A., Emery, K., Hishikawa, Y., Warta, W., and Dunlop, E.D.: Solar cell efficiency tables (version 48). Prog. Photovoltaics 24, 905 (2016).
26. Kayes, B.M., Nie, H., Twist, R., Sproytee, S.G., Reinhardt, F., Kizilyalli, I.C., and Higashi, G.S.: 27.6% conversion efficiency, a new record for single-junction solar cells under 1-sun illumination. In Proceedings of the 37th IEEE Photovoltaic Specialists Conference (IEEE, New York, 2011); p. 4.
27. Yamaguchi, M., Lee, K-H., Araki, K., Kojima, N., and Ohshita, Y.: Potential and activities of III–V/Si tandem solar cells. ECS J. Solid State Sci. Technol. 5, Q68 (2016).
28. Ringell, S.A., Carlinl, J.A., Andre, C.L., Hudait, M.K., Gonzalez, M., Wilt, D.M., Clark, E.B., Jenkins, P., Scheiman, D., Allerman, A., Fitzgerald, E.A., and Leitz, C.W.: Single-junction InGaP/GaAs solar cells grown on Si substrates with SiGe buffer layers. Prog. Photovoltaics 10, 417 (2002).
29. Yamaguchi, M., Ohmachi, Y., Oh’hara, T., Kadota, Y., Imaizumi, M., and Matsuda, S.: GaAs solar cells grown on Si substrates for space use. Prog. Photovoltaics 9, 191 (2001).
30. Yamaguchi, M. and Amano, C.: Efficiency calculations of thin-film GaAs solar cells on Si substrates. J. Appl. Phys. 58, 3601 (1985).
31. Sasaki, K., Agui, T., Naaido, K., Takahasi, N., Onitsuka, R., and Takamoto, T.: Development of InGaP/GaAs/InGaAs inverted triple junction concentrator solar cells. In Proceedings of the 9th International Conference on Concentrating Photovoltaics Systems (AIP, 2013); p. 22.
32. Chiu, P.T., Law, D.L., Woo, R.L., Singer, S., Bhusan, D., Hong, W.D., Zakaria, A., Boisvert, J.C., Mestropian, S., King, R.R., and Karam, N.H.: 35.8% space and 38.8% terrestrial 5J direct bonded cells. In Proceedings of the 40th IEEE Photovoltaic Specialists Conference (IEEE, New York, 2014); p. 11.
33. Kamada, R., Yagioka, T., Adachi, S., Handa, A., Tai, K.F., Kato, T., and Sugimoto, H.: New world record Cu(In,Ga)(Se,S)2 thin film solar cell efficiency beyond 22%. In Proceedings of the 43rd IEEE Photovoltaic Specialists Conference (IEEE, New York, 2016); p. 1287.
34. Hiroi, H., Iwata, Y., Adachi, S., Sakai, N., Sugimoto, H., and Yamada, A.: New world-record efficiency for pure-sulfide Cu(In,Ga)S2 thin-film solar cell with Cd-free buffer layer via KCN-free process. IEEE J. Photovolt. 6, 260 (2016).
35. Hiroi, H., Sakai, N., Kato, T., and Sugimoto, H.: Impact of buffer layer of kesterite solar cells. In Proceedings of the 42nd IEEE Photovoltaic Specialists Conference (IEEE, New York, 2015); p. 3625.
36. Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D., Levi, D.H., and Ho-Baillie, A.W.Y.: Solar cell efficiency tables (version 49). Prog. Photovoltaics 25, 3 (2017).
37. Yamaguch, M., Lee, K-H., Araki, K., Kojima, N., Yamada, H., and Katsumata, Y.: Analysis for efficiency potential of high-efficiency and next generation solar cells. Prog. Photovoltaics (submitted).
38. Swanson, R.: Approaching the 29% limit efficiency of silicon solar cells. In Proceedings of the 20th European Photovoltaic Solar Energy Conference (WIP, Munich, 2005); p. 584.
39. Dziewior, J. and Schmid, W.: Auger coefficient for highly doped and highly excited silicon. Appl. Phys. Lett. 31, 346 (1977).
40. Higasa, M., Nagai, Y., Nakagawa, S., and Kashima, K.: Effect of low carbon concentration on bulk carrier lifetime in MCZ silicon crystal. In Abstract of the 73rd Annual Meeting of the Japan Society of Applied Physics 20a-A20-3 (2014).
41. Arafune, K., Sasaki, T., Wakabayashi, F., Terada, Y., Ohshita, Y., and Yamaguchi, M.: Study on defects and impurities in cast-grown polycrystalline silicon substrates for solar cells. Phys. B 376–377, 236 (2006).
42. Casey, H.C. Jr. and Beehler, E.: Evidence for low surface recombination velocity on n-type InP. Appl. Phys. Lett. 30, 247 (1977).
43. Van Vechten, J.A. and Wagner, J.F.: Asymmetry of anion and cation vacancy migration enthalpies in III–V compound semiconductors: Role of the kinetic energy. Phys. Rev. B 32, 5259 (1985).
44. Wagner, J.F. and Van Vechten, J.A.: Atomic model for the EL2 defect in GaAs. Phys. Rev. B 35, 2330 (1987).
45. Yamaguchi, M. and Ando, K.: Mechanism for radiation resistance of InP solar cells. J. Appl. Phys. 63, 5555 (1988).
46. Blakers, A.W., Wang, A., Milne, A.M., Zhao, J., and Green, M.A.: 22.8% efficient silicon solar cell. Appl. Phys. Lett. 55, 1363 (1989).
47. Swanson, R., Beckwith, S., Crane, R., Eaides, W., Kwark, Y., Sinon, R., and Swiiwiun, S.: Point-contact silicon solar cells. IEEE Trans. Electron Devices 661 (1984).
48. Neuse, C.J.: III–V alloys for optoelectronic applications. J. Electron. Mater. 6, 253 (1977).
49. Yamaguchi, M.: Fundamentals and R&D status of III–V comound solar cells and materials. Phys. Status Solidi C 12, 489 (2015).
50. Miller, O.W., Yablonovitch, E., and Kurtz, S.R.: Strong internal and external luminescence as solar cells approach the Shockley–Queisser limit. IEEE J. Photovolt. 2, 303 (2012).

Keywords

Related content

Powered by UNSILO
Type Description Title
UNKNOWN
Supplementary materials

Yamaguchi supplementary material 1
Supplementary Figure

 Unknown (548 KB)
548 KB
UNKNOWN
Supplementary materials

Yamaguchi supplementary material 2
Supplementary Figure

 Unknown (272 KB)
272 KB
UNKNOWN
Supplementary materials

Yamaguchi supplementary material 3
Supplementary Figure

 Unknown (304 KB)
304 KB
WORD
Supplementary materials

Yamaguchi supplementary material 4
Yamaguchi supplementary material

 Word (13 KB)
13 KB
UNKNOWN
Supplementary materials

Yamaguchi supplementary material 5
Supplementary Figure

 Unknown (409 KB)
409 KB

Efficiency potential and recent activities of high-efficiency solar cells

  • Masafumi Yamaguchi (a1), Hiroyuki Yamada (a2), Yasuhiro Katsumata (a3), Kan-Hua Lee (a1), Kenji Araki (a1) and Nobuaki Kojima (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.