Skip to main content Accessibility help
×
×
Home

Electron energy structure of self-assembled In(Ga)As nanostructures probed by capacitance-voltage spectroscopy and one-dimensional numerical simulation

  • Wen Lei (a1), Christian Notthoff, Matthias Offer, Cedrik Meier, Axel Lorke (a2), Chennupati Jagadish (a3) and Andreas D. Wieck (a4)...

Abstract

The electron energy structure of self-assembled In(Ga)As/GaAs nanostructures, quantum dots, and quantum rings was studied with capacitance-voltage spectroscopy and one-dimensional numerical simulation using Poisson/Schrödinger equations. The electron energy levels in the quantum dots and quantum rings with respect to the electron ground state of the wetting layer were determined directly from capacitance-voltage measurements with a linear lever arm approximation. In the regime where the linear lever arm approximation was not valid anymore (after the charging of the wetting layer), the energy difference between the electron ground state of the wetting layer and the GaAs conduction band edge was obtained indirectly from a numerical simulation of the conduction band under different gate voltages, which led to the erection of complete electron energy levels of the nanostructures in the conduction band.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: wen.lei@anu.edu.au

References

Hide All
1Bimberg, D., Grundmann, M., and Ledentsov, N.N.: Quantum Dot Heterostructures (John Wiley & Sons, New York, 1999).
2Lorke, A., Luyken, R.J., Govorov, A.O., and Kotthaus, J.P.: Spectroscopy of nanoscopic semiconductor rings. Phys. Rev. Lett. 84, 2223 (2000)
3Vukmirovi, N., Indjin, D., Jovanovi, V.D., Ikoni, Z., and Harrison, P.: Symmetry of k.p Hamiltonian in pyramidal InAs/GaAs quantum dots: Application to the calculation of electronic structure. Phys. Rev. B 72, 075356 (2005)
4Climente, J.I., Korkusinski, M., Doty, M.F., Scheibner, M., Bracker, A.S., Goldoni, G., Gammon, D., and Hawrylak, P.: Antibonding hole ground state in artificial molecules. OAtube Nanotechnology 1, 901 (2008)
5Tablero, C.: Energy levels in self-assembled quantum arbitrarily shaped dots. J. Chem. Phys. 122, 064701 (2005)
6Ren, G.B. and Rorison, J.M.: Electronic structure of In1-xGaxAs quantum dots via finite difference time domain method. Phys. Rev. B 77, 245318 (2008)
7Voskoboynikov, O., Li, Y., Lu, H.M., Shih, C.F., and Lee, C.P.: Energy states and magnetization in nanoscale quantum rings. Phys. Rev. B 66, 155306 (2002)
8Climente, J.I., Planelles, J., and Rajadell, F.: Energy structure and far-infrared spectroscopy of two electrons in a self-assembled quantum ring. J. Phys.: Condens. Matter 17, 1573 (2005)
9Yamauchi, S., Komori, K., Morohashi, I., Goshima, K., and Sugaya, T.: Electronic structures in single pair of InAs/GaAs coupled quantum dots with various interdot spacings. J. Appl. Phys. 99, 033522 (2006)
10Chu, L., Zrenner, A., Böhm, G., and Abstreiter, G.: Lateral intersubband photocurrent spectroscopy on InAs/GaAs quantum dots. Appl. Phys. Lett. 76, 1944 (2000)
11Engström, O. and Kaniewska, M.: Deep level transient spectroscopy in quantum dot characterization. Nanoscale Res. Lett. 3, 179 (2008)
12Reuter, D.: Capacitance-voltage spectroscopy of InAs quantum dots, in Self-Assembled Quantum Dots, edited by Wang, Z.M. (Springer, New York, 2008).
13Drexler, H., Leonard, D., Hansen, W., Kotthaus, J.P., and Petroff, P.M.: Spectroscopy of quantum levels in charge-tunable InGaAs quantum dots. Phys. Rev. Lett. 73, 2252 (1994)
14Medeiros-Ribeiro, G., Leonard, D., and Petroff, P.M.: Electron and hole energy levels in InAs self-assembled quantum dots. Appl. Phys. Lett. 66, 1767 (1995)
15Fricke, M., Lorke, A., Kotthaus, J.P., Medeiros-Ribeiro, G., and Petroff, P.M.: Shell structure and electron-electron interaction in self-assembled InAs quantum dots. Europhys. Lett. 36, 197 (1996)
16Bock, C., Schmidt, K.H., Kunze, U., Malzer, S., and Döhler, G.H.: Valence-band structure of self-assembled InAs quantum dots studied by capacitance spectroscopy. Appl. Phys. Lett. 82, 2071 (2003)
17Granados, D. and Garcia, J.M.: Determination of the energy levels on InAs quantum dots with respect to the GaAs conduction band. Nanotechnology 16, s282 (2005)
18Tarucha, S., Austing, D.G., Honda, T., van der Hage, R.J., and Kouwenhoven, L.P.: Shell filling and spin effects in a few electron quantum dot. Phys. Rev. Lett. 77, 3613 (1996)
19Warburton, R.J., Miller, B.T., Dürr, C.S., Bödefeld, C., Karrai, K., and Kotthaus, J.P.: Coulomb interactions in small charge-tunable quantum dots: A simple model. Phys. Rev. B 58, 16221 (1998)
20Luyken, R.J., Lorke, A., Govorov, A.O., Kotthaus, J.P., Medeiros-Ribeiro, G., and Petroff, P.M.: The dynamics of tunneling into self-assembled InAs dots. Appl. Phys. Lett. 74, 2486 (1999)
21Snider, G.L.: Computer Program 1D Poisson/Schrödinger: A Band Diagram Calculator (http://www.nd.edu/Egsnider, University of Notre Dame, IN).
22Warburton, R.J., Schaflein, C., Haft, D., Bickel, F., Lorke, A., Karrai, K., Garcia, J.M., Schoenfeld, W., and Petroff, P.M.: Optical emission from a charge-tunable quantum ring. Nature 405, 926 (2000)
23Sanguinetti, S., Abbarchi, M., Vinattieri, A., Zamfirescu, M., Gurioli, M., Mano, T., Kuroda, T., and Koguchi, N.: Carrier dynamics in individual concentric quantum rings: Photoluminescence measurements. Phys. Rev. B 77, 125404 (2008)
24Filikhin, I., Suslov, V.M., and Vlahovic, B.: Modeling of InAs/GaAs quantum ring capacitance spectroscopy in the nonparabolic approximation. Phys. Rev. B 73, 205332 (2006)
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed