Skip to main content
×
×
Home

Electrophoretic deposition of nanostructured hematite photoanodes for solar hydrogen generation

  • Xiangyan Chen (a1), Meng Wang (a1), Jie Chen (a1) and Shaohua Shen (a1)
Abstract

In this study, hematite nanoparticles (α-Fe2O3 NPs) were synthesized by hydrothermal method, with morphologies (e.g., nanorhombohedra, nanobars, and nanospheres) facilely tuned by changing the concentrations of glycol in the hydrothermal solution. Then a low-cost and scalable electrophoretic deposition method was used to fabricate nanostructured α-Fe2O3 films as photoanodes for solar hydrogen generation. It was found that the film of α-Fe2O3 nanobars showed the highest photoelectrochemical (PEC) performance compared to those films of α-Fe2O3 nanorhombohedra and nanospheres, with photocurrent density reaching 0.7 mA/cm2 at 0.6 V versus Ag/AgCl. This PEC improvement may be related to the smaller diameters of nanobars shortening the carrier migration distance, reducing the recombination rate of photo-generated carriers. Moreover, all the α-Fe2O3 films showed much higher PEC performances with surface modified by Sn4+, mainly due to the reduced surface charge recombination, as the Sn4+ doped overlayer passivated surface defects. For the film of α-Fe2O3 nanobars, the photocurrent density was increased by 100%, reaching 1.4 mA/cm2 at 0.6 V versus Ag/AgCl.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: shshen_xjtu@mail.xjtu.edu.cn
References
Hide All
1. Avasare, V., Zhang, Z., Avasare, D., Khan, I., and Qurashi, A.: Room-temperature synthesis of TiO2 nanospheres and their solar driven photoelectrochemical hydrogen production. Int. J. Energy Res. 39, 1714 (2015).
2. Liu, Y., Li, J., Li, W., Yang, Y., Li, Y., and Chen, Q.: Enhancement of the photoelectrochemical performance of WO3 vertical arrays film for solar water splitting by gadolinium doping. J. Phys. Chem. C 119, 14834 (2015).
3. Hu, Y., Yan, X., Gu, Y., Chen, X., Bai, Z., Kang, Z., Long, F., and Zhang, Y.: Large-scale patterned ZnO nanorod arrays for efficient photoelectrochemical water splitting. Appl. Surf. Sci. 339, 122 (2015).
4. Mishra, M. and Chun, D.: α-Fe2O3 as a photocatalytic material: A review. Appl. Catal., A 498, 126 (2015).
5. Ohmori, T., Takahashi, H., Mametsuka, H., and Suzuki, E.: Photocatalytic oxygen evolution on α-Fe2O3 films using Fe3+ ion as a sacrificial oxidizing agent. Phys. Chem. Chem. Phys. 2, 3519 (2000).
6. Glasscock, J.A., Barnes, P.R.F., Plumb, I.C., Bendavid, A., and Martin, P.J.: Structural, optical and electrical properties of undoped polycrystalline hematite thin films produced using filtered arc deposition. Thin Solid Films 516, 1716 (2008).
7. Qi, X., She, G., Wang, M., Mu, L., and Shi, W.: Electrochemical synthesis of p-type Zn-doped α-Fe2O3 nanotube arrays for photoelectrochemical water splitting. Chem. Commun. 49, 5742 (2013).
8. Rioult, M., Belkhou, R., Magnan, H., Stanescu, D., Stanescu, S., Maccherozzi, F., Rountree, C., and Barbier, A.: Local electronic structure and photoelectrochemical activity of partial chemically etched Ti-doped hematite. Surf. Sci. 641, 310 (2015).
9. Ling, Y. and Li, Y.: Review of Sn-doped hematite nanostructures for photoelectrochemical water splitting. Part. Part. Syst. Charact. 31, 1113 (2014).
10. Kumari, S., Singh, A.P., Sonal, , Deva, D., Shrivastav, R., Dass, S., and Satsangi, V.R.: Spray pyrolytically deposited nanoporous Ti4+ doped hematite thin films for efficient photoelectrochemical splitting of water. Int. J. Hydrogen Energy 35, 3985 (2010).
11. Glasscock, J.A., Barnes, P.R.F., Plumb, I.C., and Savvides, N.: Enhancement of photoelectrochemical hydrogen production from hematite thin films by the introduction of Ti and Si. J. Phys. Chem. C 111, 16477 (2007).
12. Zhong, D.K., Sun, J., Inumaru, H., and Gamelin, D.R.: Solar water oxidation by composite catalyst/α-Fe2O3 photoanodes. J. Am. Chem. Soc. 131, 6086 (2009).
13. Li, X., Wang, Z., Zhang, Z., Chen, L., Cheng, J., Ni, W., Wang, B., and Xie, E.: Light illuminated α-Fe2O3/Pt nanoparticles as water activation agent for photoelectrochemical water splitting. Sci. Rep. 5, 9130 (2015).
14. Ling, Y., Wang, G., Wang, H., Yang, Y., and Li, Y.: Low-temperature activation of hematite nanowires for photoelectrochemical water oxidation. ChemSusChem 7, 848 (2014).
15. Shen, S., Li, M., Guo, L., Jiang, J., and Mao, S.S.: Surface passivation of undoped hematite nanorod arrays via aqueous solution growth for improved photoelectrochemical water splitting. J. Colloid Interface Sci. 427, 20 (2014).
16. Shen, S.: Toward efficient solar water splitting over hematite photoelectrodes. J. Mater. Res. 29, 29 (2014).
17. Lindgren, T., Wang, H.L., Beermann, N., Vayssieres, L., Hagfeldt, A., and Lindquist, S.E.: Aqueous photoelectrochemistry of hematite nanorod array. Sol. Energy Mater. Sol. Cells 71, 231 (2002).
18. Mao, A., Han, G.Y., and Park, J.H.: Synthesis and photoelectrochemical cell properties of vertically grown alpha-Fe2O3 nanorod arrays on a gold nanorod substrate. J. Mater. Chem. 20, 2247 (2010).
19. Vayssieres, L., Beermann, N., Lindquist, S.E., and Hagfeldt, A.: Controlled aqueous chemical growth of oriented three-dimensional crystalline nanorod arrays: Application to iron(III) oxides. Chem. Mater. 13, 233 (2001).
20. Klahr, B.M., Martinson, A.B.F., and Hamann, T.W.: Photoelectrochemical investigation of ultrathin film iron oxide solar cells prepared by atomic layer deposition. Langmuir 27, 461 (2011).
21. Liang, L. and Koshizaki, N.: Vertically aligned and ordered hematite hierarchical columnar arrays for applications in field-emission, superhydrophilicity, and photocatalysis. J. Mater. Chem. 20, 2972 (2010).
22. Enache, C.S., Liang, Y.Q., and van de Krol, R.: Characterization of structured α-Fe2O3 photoanodes prepared via electrodeposition and thermal oxidation of iron. Thin Solid Films 520, 1034 (2011).
23. Zong, X., Thaweesak, S., Xu, H., Xing, Z., Zou, J., Lu, G.M., and Wang, L.: A scalable colloidal approach to prepare hematite films for efficient solar water splitting. Phys. Chem. Chem. Phys. 15, 12314 (2013).
24. Yanyan, X., Guoying, Z., Guixiang, D., Yaqiu, S., and Dongzhao, G.: α-Fe2O3 nanostructures with different morphologies: Additive-free synthesis, magnetic properties, and visible light photocatalytic properties. Mater. Lett. 92, 321 (2013).
25. Wang, G., Yang, X., Qian, F., Zhang, J.Z., and Li, Y.: Double-sided CdS and CdSe quantum dot Co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation. Nano Lett. 10, 1088 (2010).
26. Yang, X., Wolcott, A., Wang, G., Sobo, A., Fitzmorris, R.C., Qian, F., Zhang, J.Z., and Li, Y.: Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett. 9, 455 (2009).
27. Wang, G., Wang, H., Ling, Y., Tang, Y., Yang, X., Fitzmorris, R.C., Wang, C., Zhang, J.Z., and Li, Y.: Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 11, 3026 (2011).
28. Kennedy, J.H. and Frese, J.K.W.: Photooxidation of water at α-Fe2O3 electrodes. Electrochem. Soc. 125, 709 (1978).
29. Liu, R., Zheng, Z., Spurgeon, J., and Yang, X.: Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers. Energy Environ. Sci. 7, 2504 (2014).
30. Franking, R., Li, L., Lukowski, M.A., Meng, F., Tan, Y., Hamers, R.J., and Jin, S.: Facile post-growth doping of nanostructured hematite photoanodes for enhanced photoelectrochemical water oxidation. Energy Environ. Sci. 6, 500 (2013).
31. Xi, L., Chiam, S.Y., Mak, W.F., Tran, P.D., Barber, J., Loo, S.C.J., and Wong, L.H.: A novel strategy for surface treatment on hematite photoanode for efficient water oxidation. Chem. Sci. 4, 164 (2013).
32. Ruan, G., Wu, S., Wang, P., Liu, J., Cai, Y., Tian, Z., Ye, Y., Liang, C., and Shao, G.: Simultaneous doping and growth of Sn-doped hematite nanocrystalline films with improved photoelectrochemical performance. RSC Adv. 4, 63408 (2014).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Chen supplementary material S1
Revised Supplementary Material

 Word (3.7 MB)
3.7 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed