Skip to main content

Enhanced visible photocatalytic activity of nitrogen doped single-crystal-like TiO2 by synergistic treatment with urea and mixed nitrates

  • Chenxi Li (a1), Zengying Zhao (a2), Hamukwaya Shindume Lomboleni (a2), Hongwei Huang (a3) and Zhijian Peng (a1)...

N-doped single-crystal-like TiO2 is claimed to be a very promising material among various catalytic. In this paper, N-doped single-crystal-like TiO2 (N-S-TiO2) samples were firstly prepared by molten salt method with urea and mixed nitrates as synergistic doping agents, therein, the mixed nitrates works also as a morphology modifier to form a single-crystal-like structure in the sample. The nitrogen content in the N-S-TiO2 sample could be improved because of the adding of NaNO3 and KNO3 mixed nitrates compared with using urea as a single nitrogen source. UV–Vis absorption spectroscopy analysis indicated that the nitrogen doped TiO2 has a red shift of the light absorption edge. The presence of N–O bonds on the surface of the N-S-TiO2 samples could be confirmed by x-ray photoelectron spectroscopy. The degradation efficiency of N-S-TiO2 to methylene blue under visible light is the best compared with different TiO2 samples without the treatment of mixed nitrates.

Corresponding author
a) Address all correspondence to this author. e-mail:
Hide All
Contributing Editor: Xiaobo Chen
Hide All
1. Perez, E., Vittorio, L., Torres, M.F., and Sham, E.: Nitrogen doped TiO2 photoactive in visible light. Materia-Rio De Janeiro 20(3), 561 (2015).
2. Primo, A. and Garcia, H.: Solar photocatalysis for environment remediation. New Future Dev. Catal.: Sol. Photocatal. 6, 145 (2013).
3. Fujishima, A. and Honda, K.: Electrochemical photocatalysis of water at semiconductor electrode. Nature 238(5358) (1972).
4. Minsoli, I., Phillohidis, N., Poulios, I., and Sotiropoulos, S.: Photoelectrochemical characterisation of thermal and particulate titanium dioxide electrodes. J. Appl. Electrochem. 36(4), 463 (2006).
5. Fujishima, A. and Zhang, X.: Titanium dioxide photocatalysis: Present situation and future approaches. C. R. Chim. 9(5), 750 (2006).
6. Fujishima, A., Rao, T.N., and Tryk, D.A.: Titanium dioxide photocatalysis. J. Photochem. Photobiol., C 1(1), 1 (2000).
7. Varghese, O.K., Paulose, M., LaTempa, T.J., and Grimes, C.A.: High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett. 9(2), 731 (2009).
8. Yu, J., Wang, Y., and Xiao, W.: Enhanced photoelectrocatalytic performance of SnO2/TiO2 rutile composite films. J. Mater. Chem. A 1(36), 10727 (2013).
9. Yang, J., Zhang, X., Li, B., Liu, H., Sun, P., Wang, C., Wang, L., and Liu, Y.: Photocatalytic activities of heterostructured TiO2-graphene porous microspheres prepared by ultrasonic spray pyrolysis. J. Alloys Compd. 584(1), 180 (2014).
10. Qiu, B., Xing, M., and Zhang, J.: Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries. J. Am. Chem. Soc. 136(16), 5852 (2014).
11. Li, C., Chen, G., Sun, J., Rao, J., Han, Z., Hu, Y., and Zhou, Y.: A novel mesoporous single-crystal-like Bi2WO6 with enhanced photocatalytic activity for pollutants degradation and oxygen production. ACS Appl. Mater. Interfaces 7(46), 25716 (2015).
12. Yu, Y., Zhang, J., Wu, X., Zhao, W., and Zhang, B.: Nanoporous single-crystal-like Cd x Zn1−x S nanosheets fabricated by the cation-exchange reaction of inorganic–organic hybrid ZnS-amine with cadmium ions. Angew. Chem., Int. Ed. 51(4), 897 (2012).
13. Kuang, Q. and Yang, S.: Template synthesis of single-crystal-like porous SrTiO3 nanocube assemblies and their enhanced photocatalytic hydrogen evolution. ACS Appl. Mater. Interfaces 5(9), 3683 (2013).
14. Zheng, X., Kuang, Q., Yan, K., Qiu, Y., Qiu, J., and Yang, S.: Mesoporous TiO2 single crystals: Facile shape-, size-, and phase-controlled growth and efficient photocatalytic performance. ACS Appl. Mater. Interfaces 5(21), 11249 (2013).
15. Sivaram, V., Crossland, E.J.W., Leijtens, T., Noel, N.K., Alexander-Webber, J., Docampo, P., and Snaith, H.J.: Observation of annealing-induced doping in TiO2 mesoporous single crystals for use in solid state dye sensitized solar cells. J. Phys. Chem. C 118(4), 1821 (2014).
16. Dvoranova, D., Brezova, V., Mazur, M., and Malati, M.A.: Investigations of meta-doped titanium dioxide photocatalysis. Appl. Catal., B 37(2), 91 (2002).
17. Hashimoto, K., Irie, H., and Fujishima, A.: TiO2 photocatalysis: A historical overview and future prospects. Jpn. J. Appl. Phys. 44(12), 8269 (2005).
18. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., and Taga, Y.: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293(5528), 269 (2001).
19. Asahi, R. and Morikawa, T.: Nitrogen complex species and its chemical nature in TiO2 for visible-light sensitized photocatalysis. Chem. Phys. 339(1), 57 (2007).
20. Yin, S., Yamaki, H., Komatsu, M., Zhang, Q., Wang, J., Tang, Q., Saito, F., and Sato, T.: Synthesis of visible-light reactive TiO2−x N y photocatalyst by mechanochemical doping. Solid State Sci. 7(12), 1479 (2005).
21. Zalas, M.: Synthesis of N-doped template-free mesoporous titania for visible light photocatalytic applications. Catal. Today 230, 91 (2014).
22. Hu, C.C., Hsu, T.C., and Lu, S.Y.: Effect of nitrogen doping on the microstructure and visible light photocatalysis of titanate nanotubes by a facile cohydrothermal synthesis via urea treatment. Appl. Surf. Sci. 280(9), 171 (2013).
23. Huang, H.W., Liu, K., Chen, K., Zhang, Y.L., Zhang, Y.H., and Wang, S.C.: Ce and F comodification on the crystal structure and enhanced photocatalytic activity of Bi2WO6 photocatalyst under visible light irradiation. J. Phys. Chem. C 118, 14379 (2014).
24. Myilsamy, M., Mahalakshmi, M., Murugesan, V., and Subha, N.: Enhanced photocatalytic activity of nitrogen and indium co-doped mesoporous TiO2 nanocomposites for the degradation of 2, 4-dinitrophenol under visible light. Appl. Surf. Sci. 342, 1 (2015).
25. Liu, F.l., Yan, X.d., Chen, X.j., Tian, L.h., Xia, Q.h., and Chen, X.B.: Mesoporous TiO2 nanoparticles terminated with carbonate-like groups: Amorphous/crystalline structure and visible-light photocatalytic activity. Catal. Today 264, 243 (2016).
26. Yan, Y., Chen, T.R., Zou, Y.C., and Wang, Y.: Biotemplated synthesis of Au loaded Sn-doped TiO2 hierarchical nanorods using nanocrystalline cellulose and their applications in photocatalysis. J. Mater. Res. 31, 1383 (2016).
27. Cheng, X., Yu, X., Xing, Z., and Yang, L.: Enhanced visible light photocatalytic activity of mesoporous anatase TiO2 codoped with nitrogen and chlorine. Int. J. Photoenergy 4(1), 1 (2012).
28. Xie, J., Bian, L., Yao, L., Hao, Y.J., and Wei, Y.: Simple fabrication of mesoporous TiO2 microspheres for photocatalytic degradation of pentachlorophenol. Mater. Lett. 91(3), 213 (2013).
29. Sathiyanarayanan, R., Alimohammadi, M., Zhou, Y., and Fichthorn, K.A.: Role of solvent in the shape-controlled synthesis of anisotropic colloidal nanostructures. J. Phys. Chem. C 115(39), 18983 (2011).
30. Sun, L., Zhao, Z., Zhou, Y., and Liu, L.: Anatase TiO2 nanocrystals with exposed {001} facets on graphene sheets via molecular grafting for enhanced photocatalytic activity. Nanoscale 4(2), 613 (2012).
31. Wu, J.M. and Tang, M.L.: One-pot synthesis of N-F-Cr-doped anatase TiO2 microspheres with nearly all-(001) surface for enhanced solar absorption. Nanoscale 3(9), 3915 (2011).
32. Chen, X. and Burda, C.: Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles. J. Phys. Chem. B 108(40), 15446 (2004).
33. Jagadale, T.C., Takale, S.P., Sonawane, R.S., Joshi, H.M., and Patil, S.I.: N-doped TiO2 nanoparticle based visible light photocatalyst by modified peroxide sol–gel method. J. Phys. Chem. C 112(37), 14595 (2008).
34. Sugai, S., Watanabe, H., Kioka, T., Miki, H., and Kawasaki, K.: Chemisorption of NO on Pd (100), (111) and (110) surfaces studied by AES, UPS and XPS. Surf. Sci. 259, 109 (1991).
35. Rainer, D.R., Vesecky, S.M., Koranne, M., Oh, W.S., and Goodman, D.W.: The CO + NO reaction over Pd: A combined study using single-crystal, planar-model-supported, and high-surface-area Pd/Al2O3 catalysts. J. Catal. 167(1), 234 (1997).
36. Rodriguez, J.A., Jirsak, T., Dvorak, J., Sambasivan, S., and Fischer, D.: Reaction of NO2 with Zn and ZnO: Photoemission, XANES, and density functional studies on the formation of NO3 . J. Phys. Chem. B 104(2), 319 (2000).
37. Sathish, M., Viswanathan, B., Viswanath, R.P., and Gopinath, C.S.: Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst. Chem. Mater. 17(25), 6349 (2005).
38. Yu, J.C., Zhang, L.Z., Zheng, Z., and Zhao, J.C.: Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity. Chem. Mater. 15(11), 2280 (2003).
39. Selvam, K., Balachandran, S., Velmurugan, R., and Swaminathan, M.: Mesoporous nitrogen doped nano titania—A green photocatalyst for the effective reductive cleavage of azoxybenzenes to amines or 2-phenyl indazoles in methanol. Appl. Catal., A 413, 213 (2012).
40. Xiang, Q., Yu, J., and Jaroniec, M.: Nitrogen and sulfur co-doped TiO2 nanosheets with exposed {001} facets: Synthesis, characterization and visible-light photocatalytic activity. Phys. Chem. Chem. Phys. 13(11), 4853 (2011).
41. Ong, W.J., Tan, L.L., Chai, S.P., Yong, S.T., and Mohamed, A.R.: Self-assembly of nitrogen-doped TiO2 with exposed {001} facets on a graphene scaffold as photo-active hybrid nanostructures for reduction of carbon dioxide to methane. Nano Res. 7(10), 1528 (2014).
42. Niu, M., Cheng, D.J., and Cao, D.P.: Understanding photoelectrochemical properties of B–N codoped anatase TiO2 for solar energy conversion. J. Phys. Chem. C 117, 15911 (2013).
43. Cheng, J.Y., Chen, J., Lin, W., Liu, Y.D., and Kong, Y.: Improved visible light photocatalytic activity of fluorine and nitrogen co-doped TiO2 with tunable nanoparticle size. Appl. Surf. Sci. 332, 573 (2015).
44. Naik, B., Moon, S.Y., Kim, S.H., and Park, J.Y.: Enhanced photocatalytic generation of hydrogen by Pt-deposited nitrogen-doped TiO2 hierarchical nanostructures. Appl. Surf. Sci. 354, 347 (2015).
45. Wen, J., Li, X., Liu, W., Fang, Y., Xie, J., and Xu, Y.: Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chin. J. Catal. 36, 2049 (2015).
46. Zhang, J.L., Wu, Y.M., Xing, M.Y., Leghari, S.A.K., and Sajjad, S.: Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides. Energy Environ. Sci. 3, 715 (2010).
47. Li, X., Liu, H.L., Luo, D.L., Li, J.T., Huang, Y., Li, H.L., Fang, Y.P., Xu, Y.H., and Zhu, L.: Adsorption of CO2 on heterostructure CdS(Bi2S3)/TiO2 nanotube photocatalysts and their photocatalytic activities in the reduction of CO2 to methanol under visible light irradiation. Chem. Eng. J. 180, 151 (2012).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed