Skip to main content
×
Home
    • Aa
    • Aa

Film thickness dependent microstructural changes of thick copper metallizations upon thermal fatigue

  • Stephan Bigl (a1), Claus O.W. Trost (a1), Stefan Wurster (a1), Megan J. Cordill (a2) and Daniel Kiener (a1)...
Abstract
Abstract

With increasing performance requirements in power electronics, the necessity has emerged to investigate the thermo-mechanical behavior of thick Cu metallizations (≥5 µm). Cu films on rigid substrates in the range of 5–20 µm were thermally cycled between 170 and 400 °C by a fast laser device. Compared to the initial microstructures, a texture transition toward the {100} out-of-plane orientation with increasing film thickness was observed during thermo-mechanical cycling, along with an abnormal grain growth in the {100}-oriented grains and a gradual development of substructures in a crystallographic arrangement. Compared to the well-studied thin Cu film counterparts (≤5 µm), the surface damage showed a 1/h f dependency. Transition from an orientation independent (h f = 5 µm) to an orientation specific thermo-mechanical fatigue damage (h f = 10, 20 µm) was observed following a higher damager tolerance in {100} oriented grains.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: stephan-paul.bigl@stud.unileoben.ac.at
Footnotes
Hide All

Contributing Editor: George M. Pharr

Footnotes
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

M. Nelhiebel , R. Illing , C. Schreiber , S. Wöhlert , S. Lanzerstorfer , M. Ladurner , C. Kadow , S. Decker , D. Dibra , H. Unterwalcher , M. Rogalli , W. Robl , T. Herzig , M. Poschgan , M. Inselsbacher , M. Glavanovics , and S. Fraissé : A reliable technology concept for active power cycling to extreme temperatures. Microelectron. Reliab. 51(9–11), 19271932 (2011).

P.A. Flinn , D.S. Gardner , and W.D. Nix : Measurement and interpretation of stress in aluminum-based metallization as a function of thermal history. IEEE Trans. Electron Devices 34(3), 689699 (1987).

M. Nelhiebel , R. Illing , T. Detzel , S. Wöhlert , B. Auer , S. Lanzerstorfer , M. Rogalli , W. Robl , S. Decker , J. Fugger , and M. Ladurner : Effective and reliable heat management for power devices exposed to cyclic short overload pulses. Microelectron. Reliab. 53(9–11), 17451749 (2013).

W. Robl , M. Melzl , B. Weidgans , R. Hofmann , and M. Stecher : Last metal copper metallization for power devices. IEEE Trans. Semicond. Manuf. 21(3), 358362 (2008).

X. Zhou and H. Wadley : Twin formation during the atomic deposition of copper. Acta Mater. 47(3), 10631078 (1999).

A. Wikström and M. Nygårds : Anisotropy and texture in thin copper films—An elasto-plastic analysis. Acta Mater. 50(4), 857870 (2002).

P. Sonnweber-Ribic , P. Gruber , G. Dehm , and E. Arzt : Texture transition in Cu thin films: Electron backscatter diffraction vs. X-ray diffraction. Acta Mater. 54(15), 38633870 (2006).

G.P. Zhang , C.A. Volkert , R. Schwaiger , P. Wellner , E. Arzt , and O. Kraft : Length-scale-controlled fatigue mechanisms in thin copper films. Acta Mater. 54(11), 31273139 (2006).

O. Kraft , P. Wellner , M. Hommel , R. Schwaiger , and E. Arzt : Fatigue behavior of polycrystalline thin copper films. Z. Metallkd. 93(5), 392400 (2002).

R. Mönig , R.R. Keller , and C.A. Volkert : Thermal fatigue testing of thin metal films. Rev. Sci. Instrum. 75(11), 49975004 (2004).

W. Heinz , W. Robl , and G. Dehm : Influence of initial microstructure on thermomechanical fatigue behavior of Cu films on substrates. Microelectron. Eng. 137, 510 (2015).

S. Bigl , S. Wurster , M.J. Cordill , and D. Kiener : Advanced characterisation of thermo-mechanical fatigue mechanisms of different copper film systems for wafer metallizations. Thin Solid Films 612, 153164 (2016).

G.P. Zhang , R. Schwaiger , C.A. Volkert , and O. Kraft : Effect of film thickness and grain size on fatigue-induced dislocation structures in Cu thin films. Philos. Mag. Lett. 83(8), 477483 (2003).

R. Schwaiger , G. Dehm , and O. Kraft : Cyclic deformation of polycrystalline Cu films. Philos. Mag. A 83(6), 693710 (2003).

M. Hommel , O. Kraft , and E. Arzt : A new method to study cyclic deformation of thin films in tension and compression. J. Mater. Res. 14(06), 23732376 (1999).

G.P. Zhang , C.A. Volkert , R. Schwaiger , E. Arzt , and O. Kraft : Damage behavior of 200-nm thin copper films under cyclic loading. J. Mater. Res. 20(01), 201207 (2005).

M. Aicheler , S. Sgobba , G. Arnau-Izquierdo , M. Taborelli , S. Calatroni , H. Neupert , and W. Wuensch : Evolution of surface topography in dependence on the grain orientation during surface thermal fatigue of polycrystalline copper. Int. J. Fatigue 33(3), 396402 (2011).

S.P. Baker , A. Kretschmann , and E. Arzt : Thermomechanical behavior of different texture components in Cu thin films. Acta Mater. 49(12), 21452160 (2001).

S. Bigl , S. Wurster , M.J. Cordill , and D. Kiener : Site specific microstructural evolution of thermo-mechanically fatigued copper films. Berg- Huettenmaenn. Monatsh. 160(5), 235239 (2015).

A. Wimmer , M. Smolka , W. Heinz , T. Detzel , W. Robl , C. Motz , V. Eyert , E. Wimmer , F. Jahnel , and R. Treichler : Temperature dependent transition of intragranular plastic to intergranular brittle failure in electrodeposited Cu micro-tensile samples. Mater. Sci. Eng., A 618, 398405 (2014).

S. Bigl , T. Schöberl , S. Wurster , M.J. Cordill , and D. Kiener : Correlative microstructure and topography informed nanoindentation of copper films. Surf. Coat. Technol. 308, 404413 (2016).

S. Bigl , W. Heinz , M. Kahn , H. Schoenherr , and M.J. Cordill : High-temperature characterization of silicon dioxide films with wafer curvature. JOM 67(12), 29022907 (2015).

S. Wurster , S. Bigl , M.J. Cordill , and D. Kiener : Accelerated thermo-mechanical fatigue of copper metallizations studied by pulsed laser heating. Microelectron. Eng. 167, 110118 (2016).

T.A. Hahn : Thermal expansion of copper from 20 to 800 K—Standard reference material 736. J. Appl. Phys. 41(13), 50965101 (1970).

C. Swenson : Recommended values for the thermal expansivity of silicon from 0 to 1000 K. J. Phys. Chem. Ref. Data 12(2), 179182 (1983).

K. Chavez and D. Hess : A novel method of etching copper oxide using acetic acid. J. Electrochem. Soc. 148(11), G640G643 (2001).

P. Sonnweber-Ribic , P.A. Gruber , G. Dehm , H.P. Strunk , and E. Arzt : Kinetics and driving forces of abnormal grain growth in thin Cu films. Acta Mater. 60(5), 23972406 (2012).

H. Ledbetter and E. Naimon : Elastic properties of metals and alloys. II. Copper. J. Phys. Chem. Ref. Data 3(4), 897935 (1974).

J. Rösler , H. Harders , and M. Baeker : Mechanical Behaviour of Engineering Materials: Metals, Ceramics, Polymers, and Composites (Springer Science & Business Media, Berlin Heidelberg, Germany, 2007).

E.M. Zielinski , R.P. Vinci , and J.C. Bravman : Effects of barrier layer and annealing on abnormal grain growth in copper thin films. J. Appl. Phys. 76(8), 45164523 (1994).

P.A. Flinn : Measurement and interpretation of stress in copper films as a function of thermal history. J. Mater. Res. 6(7), 14981501 (1991).

A.C.F. Cocks and M.F. Ashby : On creep fracture by void growth. Prog. Mater. Sci. 27(3), 189244 (1982).

C.V. Thompson and R. Carel : Texture development in polycrystalline thin films. Mater. Sci. Eng., B 32(3), 211219 (1995).

D. Field , B. True , T. Lillo , and J. Flinn : Observation of twin boundary migration in copper during deformation. Mater. Sci. Eng., A 372(1), 173179 (2004).

M. Calcagnotto , D. Ponge , E. Demir , and D. Raabe : Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD. Mater. Sci. Eng., A 527(10), 27382746 (2010).

S.I. Wright , M.M. Nowell , and D.P. Field : A review of strain analysis using electron backscatter diffraction. Microsc. Microanal. 17(3), 316329 (2011).

P. Charsley and D. Kuhlmann-Wilsdorf : Configurations of {100} dislocation walls formed during fatigue. Philos. Mag. A 44(6), 13511361 (1981).

M. Saxlová and J. Kratochvíl : A theory of dipolar dislocation wall structures. Mater. Sci. Eng., A 188(1–2), 6979 (1994).

W. Read and W. Shockley : Dislocation models of crystal grain boundaries. Phys. Rev. A 78(3), 275 (1950).

J-M. Zhang , K-W. Xu , and V. Ji : Competition between surface and strain energy during grain growth in free-standing and attached Ag and Cu films on Si substrates. Appl. Surf. Sci. 187(1–2), 6067 (2002).

E.S. Gadelmawla , M.M. Koura , T.M.A. Maksoud , I.M. Elewa , and H.H. Soliman : Roughness parameters. J. Mater. Process. Technol. 123(1), 133145 (2002).

J. Ahlberg , E. Nilson , and J. Walsh : The Theory of Splines and Their Applications, Mathematics in Science and Engineering (Academic Press, New York, 1967).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 1
Total number of PDF views: 10 *
Loading metrics...

Abstract views

Total abstract views: 45 *
Loading metrics...

* Views captured on Cambridge Core between 13th June 2017 - 28th June 2017. This data will be updated every 24 hours.