Skip to main content

Film thickness dependent microstructural changes of thick copper metallizations upon thermal fatigue

  • Stephan Bigl (a1), Claus O.W. Trost (a1), Stefan Wurster (a1), Megan J. Cordill (a2) and Daniel Kiener (a1)...

With increasing performance requirements in power electronics, the necessity has emerged to investigate the thermo-mechanical behavior of thick Cu metallizations (≥5 µm). Cu films on rigid substrates in the range of 5–20 µm were thermally cycled between 170 and 400 °C by a fast laser device. Compared to the initial microstructures, a texture transition toward the {100} out-of-plane orientation with increasing film thickness was observed during thermo-mechanical cycling, along with an abnormal grain growth in the {100}-oriented grains and a gradual development of substructures in a crystallographic arrangement. Compared to the well-studied thin Cu film counterparts (≤5 µm), the surface damage showed a 1/h f dependency. Transition from an orientation independent (h f = 5 µm) to an orientation specific thermo-mechanical fatigue damage (h f = 10, 20 µm) was observed following a higher damager tolerance in {100} oriented grains.

Corresponding author
a) Address all correspondence to this author. e-mail:
Hide All

Contributing Editor: George M. Pharr

Hide All
1. Moore G.E.: Cramming more components onto integrated circuits. Electronics 38(8), 114117 (1965).
2. Nelhiebel M., Illing R., Schreiber C., Wöhlert S., Lanzerstorfer S., Ladurner M., Kadow C., Decker S., Dibra D., Unterwalcher H., Rogalli M., Robl W., Herzig T., Poschgan M., Inselsbacher M., Glavanovics M., and Fraissé S.: A reliable technology concept for active power cycling to extreme temperatures. Microelectron. Reliab. 51(9–11), 19271932 (2011).
3. Flinn P.A., Gardner D.S., and Nix W.D.: Measurement and interpretation of stress in aluminum-based metallization as a function of thermal history. IEEE Trans. Electron Devices 34(3), 689699 (1987).
4. Nelhiebel M., Illing R., Detzel T., Wöhlert S., Auer B., Lanzerstorfer S., Rogalli M., Robl W., Decker S., Fugger J., and Ladurner M.: Effective and reliable heat management for power devices exposed to cyclic short overload pulses. Microelectron. Reliab. 53(9–11), 17451749 (2013).
5. Robl W., Melzl M., Weidgans B., Hofmann R., and Stecher M.: Last metal copper metallization for power devices. IEEE Trans. Semicond. Manuf. 21(3), 358362 (2008).
6. Zhou X. and Wadley H.: Twin formation during the atomic deposition of copper. Acta Mater. 47(3), 10631078 (1999).
7. Wikström A. and Nygårds M.: Anisotropy and texture in thin copper films—An elasto-plastic analysis. Acta Mater. 50(4), 857870 (2002).
8. Thompson C. and Carel R.: Grain growth and texture evolution in thin films. Mater. Sci. Forum, 204–206, 8398 (1996).
9. Sonnweber-Ribic P., Gruber P., Dehm G., and Arzt E.: Texture transition in Cu thin films: Electron backscatter diffraction vs. X-ray diffraction. Acta Mater. 54(15), 38633870 (2006).
10. Zhang G.P., Volkert C.A., Schwaiger R., Wellner P., Arzt E., and Kraft O.: Length-scale-controlled fatigue mechanisms in thin copper films. Acta Mater. 54(11), 31273139 (2006).
11. Kraft O., Wellner P., Hommel M., Schwaiger R., and Arzt E.: Fatigue behavior of polycrystalline thin copper films. Z. Metallkd. 93(5), 392400 (2002).
12. Mönig R., Keller R.R., and Volkert C.A.: Thermal fatigue testing of thin metal films. Rev. Sci. Instrum. 75(11), 49975004 (2004).
13. Heinz W., Robl W., and Dehm G.: Influence of initial microstructure on thermomechanical fatigue behavior of Cu films on substrates. Microelectron. Eng. 137, 510 (2015).
14. Kraft O., Schwaiger R., and Wellner P.: Fatigue in thin films: Lifetime and damage formation. Mater. Sci. Eng., A 319–321, 919923 (2001).
15. Bigl S., Wurster S., Cordill M.J., and Kiener D.: Advanced characterisation of thermo-mechanical fatigue mechanisms of different copper film systems for wafer metallizations. Thin Solid Films 612, 153164 (2016).
16. Zhang G.P., Schwaiger R., Volkert C.A., and Kraft O.: Effect of film thickness and grain size on fatigue-induced dislocation structures in Cu thin films. Philos. Mag. Lett. 83(8), 477483 (2003).
17. Schwaiger R., Dehm G., and Kraft O.: Cyclic deformation of polycrystalline Cu films. Philos. Mag. A 83(6), 693710 (2003).
18. Hommel M., Kraft O., and Arzt E.: A new method to study cyclic deformation of thin films in tension and compression. J. Mater. Res. 14(06), 23732376 (1999).
19. Zhang G.P., Volkert C.A., Schwaiger R., Arzt E., and Kraft O.: Damage behavior of 200-nm thin copper films under cyclic loading. J. Mater. Res. 20(01), 201207 (2005).
20. Aicheler M., Sgobba S., Arnau-Izquierdo G., Taborelli M., Calatroni S., Neupert H., and Wuensch W.: Evolution of surface topography in dependence on the grain orientation during surface thermal fatigue of polycrystalline copper. Int. J. Fatigue 33(3), 396402 (2011).
21. Mönig R.: Thermal fatigue of Cu thin films. PhD dissertation, Max Planck Institute (2005).
22. Baker S.P., Kretschmann A., and Arzt E.: Thermomechanical behavior of different texture components in Cu thin films. Acta Mater. 49(12), 21452160 (2001).
23. Akiniwa Y., Suzuki T., and Tanaka K.: Evaluation of deformation behavior in Cu thin film under tensile and fatigue loading by X-ray method. Mater. Sci. Forum 55, 807812 (2006).
24. Bigl S., Wurster S., Cordill M.J., and Kiener D.: Site specific microstructural evolution of thermo-mechanically fatigued copper films. Berg- Huettenmaenn. Monatsh. 160(5), 235239 (2015).
25. Wimmer A., Smolka M., Heinz W., Detzel T., Robl W., Motz C., Eyert V., Wimmer E., Jahnel F., and Treichler R.: Temperature dependent transition of intragranular plastic to intergranular brittle failure in electrodeposited Cu micro-tensile samples. Mater. Sci. Eng., A 618, 398405 (2014).
26. Bigl S., Schöberl T., Wurster S., Cordill M.J., and Kiener D.: Correlative microstructure and topography informed nanoindentation of copper films. Surf. Coat. Technol. 308, 404413 (2016).
27. Bigl S., Heinz W., Kahn M., Schoenherr H., and Cordill M.J.: High-temperature characterization of silicon dioxide films with wafer curvature. JOM 67(12), 29022907 (2015).
28. Wurster S., Bigl S., Cordill M.J., and Kiener D.: Accelerated thermo-mechanical fatigue of copper metallizations studied by pulsed laser heating. Microelectron. Eng. 167, 110118 (2016).
29. Hahn T.A.: Thermal expansion of copper from 20 to 800 K—Standard reference material 736. J. Appl. Phys. 41(13), 50965101 (1970).
30. Swenson C.: Recommended values for the thermal expansivity of silicon from 0 to 1000 K. J. Phys. Chem. Ref. Data 12(2), 179182 (1983).
31. Chavez K. and Hess D.: A novel method of etching copper oxide using acetic acid. J. Electrochem. Soc. 148(11), G640G643 (2001).
32. Nečas D. and Klapetek P.: Gwyddion: An open-source software for SPM data analysis. Cent. Eur. J. Phys. 10(1), 181188 (2012).
33. Sonnweber-Ribic P., Gruber P.A., Dehm G., Strunk H.P., and Arzt E.: Kinetics and driving forces of abnormal grain growth in thin Cu films. Acta Mater. 60(5), 23972406 (2012).
34. Ledbetter H. and Naimon E.: Elastic properties of metals and alloys. II. Copper. J. Phys. Chem. Ref. Data 3(4), 897935 (1974).
35. Rösler J., Harders H., and Baeker M.: Mechanical Behaviour of Engineering Materials: Metals, Ceramics, Polymers, and Composites (Springer Science & Business Media, Berlin Heidelberg, Germany, 2007).
36. Zielinski E.M., Vinci R.P., and Bravman J.C.: Effects of barrier layer and annealing on abnormal grain growth in copper thin films. J. Appl. Phys. 76(8), 45164523 (1994).
37. Flinn P.A.: Measurement and interpretation of stress in copper films as a function of thermal history. J. Mater. Res. 6(7), 14981501 (1991).
38. Weiss D.: Deformation mechanisms in pure and alloyed copper films. PhD dissertation, Universität Stuttgart, Stuttgart, (2000).
39. Cocks A.C.F. and Ashby M.F.: On creep fracture by void growth. Prog. Mater. Sci. 27(3), 189244 (1982).
40. Thompson C.V. and Carel R.: Texture development in polycrystalline thin films. Mater. Sci. Eng., B 32(3), 211219 (1995).
41. Field D., True B., Lillo T., and Flinn J.: Observation of twin boundary migration in copper during deformation. Mater. Sci. Eng., A 372(1), 173179 (2004).
42. Calcagnotto M., Ponge D., Demir E., and Raabe D.: Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD. Mater. Sci. Eng., A 527(10), 27382746 (2010).
43. Wright S.I., Nowell M.M., and Field D.P.: A review of strain analysis using electron backscatter diffraction. Microsc. Microanal. 17(3), 316329 (2011).
44. Charsley P. and Kuhlmann-Wilsdorf D.: Configurations of {100} dislocation walls formed during fatigue. Philos. Mag. A 44(6), 13511361 (1981).
45. Saxlová M. and Kratochvíl J.: A theory of dipolar dislocation wall structures. Mater. Sci. Eng., A 188(1–2), 6979 (1994).
46. Read W. and Shockley W.: Dislocation models of crystal grain boundaries. Phys. Rev. A 78(3), 275 (1950).
47. Zhang J-M., Xu K-W., and Ji V.: Competition between surface and strain energy during grain growth in free-standing and attached Ag and Cu films on Si substrates. Appl. Surf. Sci. 187(1–2), 6067 (2002).
48. Gadelmawla E.S., Koura M.M., Maksoud T.M.A., Elewa I.M., and Soliman H.H.: Roughness parameters. J. Mater. Process. Technol. 123(1), 133145 (2002).
49. Ahlberg J., Nilson E., and Walsh J.: The Theory of Splines and Their Applications, Mathematics in Science and Engineering (Academic Press, New York, 1967).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 4
Total number of PDF views: 53 *
Loading metrics...

Abstract views

Total abstract views: 235 *
Loading metrics...

* Views captured on Cambridge Core between 13th June 2017 - 20th January 2018. This data will be updated every 24 hours.