Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T20:31:39.089Z Has data issue: false hasContentIssue false

Formation of Ruddlesden–Popper faults and polytype phases in SrO-doped SrTiO3

Published online by Cambridge University Press:  31 January 2011

S. Šturm
Affiliation:
“Jožef Stefan” Institute, Ceramics Department, Jamova 39, 1000 Ljubljana, Slovenia
A. Rečnik
Affiliation:
“Jožef Stefan” Institute, Ceramics Department, Jamova 39, 1000 Ljubljana, Slovenia
C. Scheu
Affiliation:
Max-Planck-Institut für Metallforschung, Seestrasse 92, 70174 Stuttgart, Germany
M. Čeh
Affiliation:
“Jožef Stefan” Institute, Ceramics Department, Jamova 39, 1000 Ljubljana, Slovenia
Get access

Abstract

The formation of so-called Ruddlesden–Popper planar faults was studied in SrO-doped SrTiO3 for different quantities of SrO additions and sintering conditions. For small SrO additions we observed a microstructure with a uniform grain size distribution and the enrichment of SrO at the grain boundaries. Larger additions of SrO produced a microstructure of elongated grains containing random planar faults, polytypic lamellae of more or less ordered faults, and polytype loops within SrTiO3 grains. We showed that these SrTiO3 grains were elongated as a result of preferential growth of the polytypic lamellae. In addition, we discuss a correlation between the formation of planar faults embedded in the perovskite matrix at low firing temperatures and Ruddlesden–Popper phases that are stable at higher temperatures.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Čeh, M., Gu, H., Müllejans, H., and Rečnik, A., J. Mater. Res. 12, 2438 (1997).CrossRefGoogle Scholar
2. Čeh, M. and Kolar, D., J. Mater. Sci. 29, 6295 (1994).CrossRefGoogle Scholar
3. Cocco, A. and Massazza, F., Ann. Chim. (Rome) 53, 883 (1963).Google Scholar
4. McCarthy, G.J., White, W.B., and Roy, R., J. Am. Ceram. Soc. 52, 463 (1969).CrossRefGoogle Scholar
5. Ruddlesden, S.N. and Popper, P., Acta Crystallogr. 11, 54 (1958).CrossRefGoogle Scholar
6. Udayakumar, K.R. and Cormack, A.N., J. Am. Ceram. Soc. 71, C469 (1988).CrossRefGoogle Scholar
7. Hawkins, K. and White, T.J., Philos. Trans. R. Soc. London, Ser. A 336, 541 (1991).Google Scholar
8. McCoy, M.A., Grimes, R.W., and Lee, W.E., Philos. Mag. A 75, 833 (1997).CrossRefGoogle Scholar
9. Tilley, R.J., J. Solid State Chem. 21, 293 (1977).CrossRefGoogle Scholar
10. Šturm, S., Rečnik, A., Ceh, M. in IVth Multinational congress on electron microscopy, edited by Kovacs, K. (University of Vesz-prem, Veszprem, Hungary, 1999), p. 365.Google Scholar
11. Cliff, G. and Lorimer, G.W., J. Microsc. 103, 203 (1975).CrossRefGoogle Scholar
12. Ikeda, J.A.S, Chiang, Y.M., Garratt-Reed, A.J., and Vander Sande, J.B., J. Am. Ceram. Soc. 76, 2447 (1993).CrossRefGoogle Scholar
13. Müllejans, H. and Bruley, J., Ultramicroscopy 53, 351 (1994).CrossRefGoogle Scholar
14. Kingery, W.D., Bowen, H.K., Uhlmann, D.R., Introduction to ceramics, 2nd ed. (John Wiley & Sons, New York, 1976), pp. 270, 448.Google Scholar
15. Witek, S. and Smyth, D.M., J. Am. Ceram. Soc. 67, 372 (1984).CrossRefGoogle Scholar
16. Han, Y.H., Harmer, M.P., Hu, Y.H., and Smyth, D.M., Transport in Nonstoichiometric Compounds, edited by Simkovich, G. and Stubican, V.S. (Proc. 3rd Int. Conf., NATO Adv. Res. Workshop, Plenum, New York, 1985), p. 73.CrossRefGoogle Scholar
17. Rečnik, A., Bruley, J., Mader, W., Kolar, D., and Rühle, M., Philos. Mag. B 70, 1021 (1994).CrossRefGoogle Scholar
18. Schmelz, H. and Meyer, A., Ceram. Forum Int. 59, 436 (1982).Google Scholar