Skip to main content
    • Aa
    • Aa

Growth and transport properties of p-type GaNBi alloys

  • Alejandro X. Levander (a1), Sergei V. Novikov (a2), Zuzanna Liliental-Weber (a3), Roberto dos Reis (a4), Jonathan D. Denlinger (a5), Junqiao Wu (a6), Oscar D. Dubon (a6), C.T. Foxon (a7), Kin M. Yu (a8) and Wladek Walukiewicz (a8)...

Thin films of GaNBi alloys with up to 12.5 at.% Bi were grown on sapphire using low-temperature molecular beam epitaxy. The low growth temperature and incorporation of Bi resulted in a morphology of nanocrystallites embedded in an amorphous matrix. The composition and optical absorption shift were found to depend strongly on the III:V ratio controlled by the Ga flux during growth. Increasing the incorporation of Bi resulted in an increase in conductivity of almost five orders of magnitude to 144 Ω-cm−1. Holes were determined to be the majority charge carriers indicating that the conductivity most likely results from a GaNBi-related phase. Soft x-ray emission and x-ray absorption spectroscopies were used to probe the modification of the nitrogen partial density of states due to Bi. The valence band edge was found to shift abruptly to the midgap position of GaN, whereas the conduction band edge shifted more gradually.

Corresponding author
a)Address all correspondence to this author. e-mail:
Hide All
1.Walukiewicz W., Shan W., Yu K.M., Ager J.W. III, Haller E.E., Miotkowski I., Seong M.J., Alawadhi H., and Ramdas A.K.: Interaction of localized electronic states with the conduction band: Band anticrossing in II-VI semiconductor ternaries. Phys. Rev. Lett. 85, 1552 (2000).
2.Shan W., Walukiewicz W., Ager J.W. III, Haller E.E., Geisz J.F., Friedman D.J., Olson J.M., and Kurtz S.R.: Band anticrossing in GaInNAs alloys. Phys. Rev. Lett. 82, 1221 (1999).
3.Alberi K., Dubon O.D., Walukiewicz W., Yu K.M., Bertulis K., and Krotkus A.: Valence band anticrossing in GaBixAs1-x. Appl. Phys. Lett. 91, 051909 (2007).
4.Francoeur S., Seong M-J., Mascarenhas A., Tixier S., Adamcyk M., and Tiedje T.: Band gap of GaAs1-xBix, 0 < x < 3.6%. Appl. Phys. Lett. 82, 3874 (2003).
5.Wu J., Walukiewicz W., Yu K.M., Denlinger J.D., Shan W., Ager J.W. III, Kimura A., Tang H.F., and Kuech T.F.: Valence band hybridization in N-rich GaN1-xAsx. Phys. Rev. B 70, 115214 (2004).
6.Bertulis K., Krotkus A., Aleksejenko G., Pacebutas V., Adomavicius R., Molis G., and Marcinkevicius S.: GaBiAs: A material for optoelectronic terahertz devices. Appl. Phys. Lett. 88, 201112 (2006).
7.Fluegel B., Francoeur S., Mascarenhas A., Tixier S., Young E.C., and Tiedje T.: Giant spin-orbit bowing in GaAs1-xBix. Phys. Rev. Lett. 97, 067205 (2006).
8.Uesugi K., Morooka N., and Suemune I.: Reexamination of N composition dependence of coherently grown GaNAs band gap energy with high-resolution x-ray diffraction mapping measurements. Appl. Phys. Lett. 74, 1254 (1999).
9.Huang W., Oe K., Feng G., and Yoshimoto M.: Molecular-beam epitaxy and characteristics of GaNyAs1-x-yBix. J. Appl. Phys. 98, 053505 (2005).
10.Novikov S.V., Staddon C.R., Foxon C.T., Yu K.M., Broesler R., Hawkridge M., Liliental-Weber Z., Walukiewicz W., Denlinger J., and Demchenko I.: Molecular beam epitaxy of GaNAs alloys with high As content for potential photoanode applications in hydrogen production. J. Vac. Sci. Technol. B 28, C3B12 (2010).
11.Yu K.M., Novikov S.V., Broesler R., Demchenko I.N., Denlinger J.D., Liliental-Weber Z., Luckert F., Martin R.W., Walukiewicz W., and Foxon C.T.: Highly mismatch crystalline and amorphous GaN1-xAsx alloys in the whole composition range. J. Appl. Phys. 106, 103709 (2009).
12.Yu K.M., Novikov S.V., Broesler R., Liliental-Weber Z., Levander A.X., Kao V.M., Dubon O.D., Wu J., Walukiewicz W., and Foxon C.T.: Low gap amorphous GaN1-xAsx alloys grown on glass substrates. Appl. Phys. Lett. 97, 101906 (2010).
13.Foxon C.T., Novikov S.V., Li T., Campion R.P., Winser A.J., and Harrison I.: Bismuth a new surfactant of contact for GaN films grown by molecular beam epitaxy. Phys. Status Solidi A 192, 441 (2002).
14.Gordy W. and Orville Thomas W.J.: Electronegativities of the elements. J. Chem. Phys. 24, 439 (1956).
15.Morkoç H., Strite S., Gao G.B., Lin M.E., Sverdlov B., and Burns M.: Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies. J. Appl. Phys. 76, 1363 (1994).
16.Trumbore F.A., Gershenzon M., and Thomas D.G.: Luminescence due to the isoelectronic substitution of bismuth for phosphorous in gallium phosphide. Appl. Phys. Lett. 9, 4 (1966).
17.Vurgaftman I. and Meyer J.R.: Band parameters for nitrogen-containing semiconductors. J. Appl. Phys. 94, 3675 (2003).
18.Levander A.X., Yu K.M., Novikov S.V., Tseng A., Foxon C.T., Dubon O.D., Wu J., and Walukiewicz W.: GaN1-xBix: Extremely mismatched semiconductor alloys. Appl. Phys. Lett. 97, 141919 (2010).
19.Stumm P. and Drabold D.A.: Can amorphous GaN serve as a useful electronic material? Phys. Rev. Lett. 79, 677 (1997).
20.Mott N.F. and Davis E.A.: Electronic Processes in Non-crystalline Materials (Oxford University Press, USA, 1979).
21.Ager J.W. III, Miller N., Jones R.E., Yu K.M., Wu J., Schaff W.J., and Walukiewicz W.: Mg-doped InN and InGaN—Photoluminescence, capacitance–voltage and thermopower measurements. Phys. Status Solidi B 245, 873 (2008).
22.Oe K. and Okamoto H.: New semiconductor alloy GaAs1-xBix grown by metal organic vapor phase epitaxy. Jpn. J. Appl. Phys. 37, L1283 (1998).
23.Yoshimoto M., Murata S., Chayahara A., Horino Y., Saraie J., and Oe K.: Metastable GaAsBi alloy grown by molecular beam epitaxy. Jpn. J. Appl. Phys. 42, L1235 (2003).
24.Henini M., Ibáñez J., Schmidbauer M., Shafi M., Novikov S.V., Turyanska L., Molina S.I., Sales D.L., Chisholm M.F., and Misiewicz J.: Molecular beam epitaxy of GaBiAs on (311)B GaAs substrates. Appl. Phys. Lett. 91, 251909 (2007).
25.Liliental-Weber Z., dos Reis R., Levander A.X., Yu K.M., Walukiewicz W., Novikov S.V., and Foxon C.T.: Structural studies of GaN1-xAsx and GaN1-xBix alloys for solar cell applications. Phys. Status Solidi C (2011, in press).
26.Damodara Das V. and Soundararajan N.: Size and temperature effects on the Seebeck coefficient of thin bismuth films. Phys. Rev. B 35, 5990 (1987).
27.Van de Walle C.G. and Neugebauer J.: First-principles calculations for defects and impurities: Applications to III-nitrides. J. Appl. Phys. 95, 3851 (2004).
28.Walukiewicz W.: Intrinsic limitations to the doping of wide-gap semiconductors. Physica B 302303, 123 (2001).
29.Duda L.C., Stagarescu C.B., Downes J., Smith K.E., Korakakis D., Moustakas T.D., Guo J.H., and Nordgren J.: Density of states, hybridization, and band-gap evolution in AlxGa1-xN. Phys. Rev. B 58, 1928 (1998).
30.Strocov V.N., Schmitt T., Rubensson J-E., Blaha P., Paskova T., and Nilsson P.O.: Momentum selectivity and anisotropy effects in the nitrogen K-edge resonant inelastic x-ray scattering from GaN. Phys. Rev. B 72, 085221 (1995).
31.Walukiewicz W., Alberi K., Wu J., Shan W., Yu K.M., and Ager J.W. III: Electronic band structure of highly mismatched semiconductor alloys, in Dilute III-V Nitride Semiconductors and Material Systems: Physics and Technology, edited by Erol A. (Springer-Verlag, Berlin, 2008), pp. 6587.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 1
Total number of PDF views: 7 *
Loading metrics...

Abstract views

Total abstract views: 116 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd October 2017. This data will be updated every 24 hours.