Skip to main content
×
Home
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 27
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Wang, Yuejian Liu, Zhi T. Y. Khare, Sanjay V. Collins, Sean Andrew Zhang, Jianzhong Wang, Liping and Zhao, Yusheng 2016. Thermal equation of state of silicon carbide. Applied Physics Letters, Vol. 108, Issue. 6, p. 061906.


    Salamone, S. Aghajanian, M. Horner, S.E and Zheng, J.Q. 2015. Advances in Ceramic Armor XI.


    Yu, Shengjie Chen, Zhaofeng Wang, Yang Hu, Shuwei Luo, Ruiying and Cui, Sheng 2015. Growth of SiC as Binder to Adhere Diamond Particle and Tribological Properties of Diamond Particles Coated SiC. Journal of Materials Science & Technology, Vol. 31, Issue. 11, p. 1133.


    Zhou, Xiaolin Wang, Yanhui Li, Tianheng Li, Xiaohu Cheng, Xiaozhe Dong, Liang Yuan, Yungang Zang, Jianbing Lu, Jing Yu, Yiqing and Xu, Xipeng 2015. Fabrication of diamond–SiC–TiC composite by a spark plasma sintering-reactive synthesis method. Journal of the European Ceramic Society, Vol. 35, Issue. 1, p. 69.


    Deng, Hui Ueda, Masaki and Yamamura, Kazuya 2014. Characterization of 4H-SiC (0001) surface processed by plasma-assisted polishing. The International Journal of Advanced Manufacturing Technology, Vol. 72, Issue. 1-4, p. 1.


    Deng, H. and Yamamura, K. 2013. Atomic-scale flattening mechanism of 4H-SiC (0001) in plasma assisted polishing. CIRP Annals - Manufacturing Technology, Vol. 62, Issue. 1, p. 575.


    Shen, Xinmin Dai, Yifan Deng, Hui Guan, Chaoliang and Yamamura, Kazuya 2013. Comparative analysis of oxidation methods of reaction-sintered silicon carbide for optimization of oxidation-assisted polishing. Optics Express, Vol. 21, Issue. 22, p. 26123.


    Shen, Xinmin Dai, Yifan Deng, Hui Guan, Chaoliang and Yamamura, Kazuya 2013. Ultrasmooth reaction-sintered silicon carbide surface resulting from combination of thermal oxidation and ceria slurry polishing. Optics Express, Vol. 21, Issue. 12, p. 14780.


    Qian, J. McMurray, C.E. Mukhopadhyay, D.K. Wiggins, J.K. Vail, M.A. and Bertagnolli, K.E. 2012. Polycrystalline diamond cutters sintered with magnesium carbonate in cubic anvil press. International Journal of Refractory Metals and Hard Materials, Vol. 31, p. 71.


    Wang, Haikuo and He, Duanwei 2012. A hybrid pressure cell of pyrophyllite and magnesium oxide to extend the pressure range for large volume cubic presses. High Pressure Research, p. 1.


    Salamone, S. and Spriggs, O. 2011. Mechanical Properties and Performance of Engineering Ceramics and Composites VI.


    Belnap, J.D. 2010. Sintering of Advanced Materials.


    Boland, James N. and Li, Xing S. 2010. Microstructural Characterisation and Wear Behaviour of Diamond Composite Materials. Materials, Vol. 3, Issue. 2, p. 1390.


    Salamone, S. Neill, R. and Aghajanian, M. 2010. Mechanical Properties and Performance of Engineering Ceramics and Composites V.


    Wang, Haikuo He, Duanwei Tan, Ning Wang, Wendan Wang, Jianghua Dong, Haini Ma, Huan Kou, Zili Peng, Fang Liu, Xi and Li, Sicheng 2010. Note: An anvil-preformed gasket system to extend the pressure range for large volume cubic presses. Review of Scientific Instruments, Vol. 81, Issue. 11, p. 116102.


    Mlungwane, K. Sigalas, I. Herrmann, M. and Rodríguez, M. 2009. The wetting behaviour and reaction kinetics in diamond–silicon carbide systems. Ceramics International, Vol. 35, Issue. 6, p. 2435.


    Nauyoks, Stephen Wieligor, Monika Zerda, T.W. Balogh, Levente Ungar, Tamas and Stephens, Peter 2009. Stress and dislocations in diamond–SiC composites sintered at high pressure, high temperature conditions. Composites Part A: Applied Science and Manufacturing, Vol. 40, Issue. 5, p. 566.


    Park, Hee-Sub Ryoo, Min-Ho and Hong, Soon-Hyung 2009. Interfacial Characteristics and Mechanical Properties of HPHT Sintered Diamond/SiC Composites. Journal of Korean Powder Metallurgy Institute, Vol. 16, Issue. 6, p. 416.


    Mlungwane, K. Herrmann, M. and Sigalas, I. 2008. The low-pressure infiltration of diamond by silicon to form diamond–silicon carbide composites. Journal of the European Ceramic Society, Vol. 28, Issue. 1, p. 321.


    Leparoux, S. Diot, C. Dubach, A. and Vaucher, S. 2007. Synthesis of silicon carbide coating on diamond by microwave heating of diamond and silicon powder: A heteroepitaxial growth. Scripta Materialia, Vol. 57, Issue. 7, p. 595.


    ×

High-pressure, high-temperature sintering of diamond–SiC composites by ball-milled diamond–Si mixtures

  • J. Qian (a1), G. Voronin (a2), T. W. Zerda (a2), D. He (a3) and Y. Zhao (a3)
  • DOI: http://dx.doi.org/10.1557/JMR.2002.0317
  • Published online: 01 January 2011
Abstract

A new method of sintering diamond-silicon carbide composites is proposed. This method is an alternate to the liquid silicon infiltration technique and is based on simultaneous ball milling of diamond and silicon powder mixtures. Composites with fine-grain diamonds embedded in a diamond–SiC nanocrystalline matrix were sintered from these mixtures. Scanning electron microscopy, x-ray diffraction, and Raman scattering were used to characterize the ball-milled precursors and the sintered composites. It was found that the presence of diamond micron-size particles in the initial powder mixture promotes milling of silicone particles and their transformation into the amorphous state. Mechanical properties of the composites, sintered from mixtures of different ball-milling history at different pressure–temperature conditions, (6 GPa/1400 °C and 8 GPa/2000 °C) were studied.

Copyright
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1.H.T. Hall , Science 169, 868 (1970).

3.S.K. Gordeev , S.G. Zhukov , L.V. Danchukova , and T.C. Ekstrom , Inorg. Mater. 37, 579 (2001).

4.Y.S. Ko , T. Tsurumi , O. Fukunaga , and T. Yano , J. Mater. Sci. 36, 469 (2001).

6.M.J. Lipp , V.G. Baonza , W.J. Evans , and H.E. Lorenzana , Phys. Rev. B 56, 5978 (1997).

7.S. Prawer , K.W. Nugent , D.N. Jamieson , J.O. Orwa , L.A. Bursill , and J.L. Peng , Chem. Phys. Lett. 332, 93 (2000).

8.D.M. Gruen , Ann. Rev. Mater. Sci. 29, 211 (1999).

9.M. Yoshikawa , Y. Mori , H. Obata , M. Maegawa , G. Katagiri , H. Ishida , and A. Ishitani , Appl. Phys. Lett. 67, 694 (1995).

10.A.R. Krauss , O. Auciello , D.M. Gruen , A. Jayatissa , A. Sumant , J. Tucek , D.C. Mancini , N. Moldovan , A. Erdemir , D. Ersoy , M.N. Gardos , H.G. Busmann , E.M. Meyer , and M.Q. Ding , Diamond Relat. Mater. 10, 1952 (2001).

11.W. Zhu , G.P. Kochanski , and S. Jin , Science 282, 1471 (1998).

12.M. Ohkoshi , T. Akashi , K. Yamada , and A.B. Sawaoka , J. Mater. Proc. Tech. 85, 131 (1999).

13.E.A. Ekimov , A.G. Gavriliuk , B. Palosz , S. Gierlotka , P. Dluzewski , E. Tatianin , Yu. Kluev , A.M. Naletov , and A. Presz , Appl. Phys. Lett. 77, 954 (2000).

16.J. Huang , Y.T. Zhu , and H. Mori , J. Mater. Res. 16, 1178 (2001).

21.G. Morell , R.S. Katiyar , S.Z. Weisz , and I. Balberg , J. Non-Cryst. Solids 194, 78 (1996).

22.P. Mishra and K.P. Jain , Phys. Rev. B 62, 14790 (2000).

24.C. Thomsen and S. Reich , Phys. Rev. Lett. 85, 5214 (2000).

25.F. Tuinstra and J.L. Koenig , J. Chem. Phys. 53, 1126 (1970).

26.X.Y. Yang , Z.W. Huang , Y.K. Wu , and H.Q. Ye , Mater. Sci. Eng. A 300, 278 (2001).

28.G.A. Voronin , C. Pantea , T.W. Zerda , and K. Ejsmont , J. Appl. Phys. 90, 5933 (2001).

30.P. Werner , H.J. Gossmann , and D.C. Jacobson , Appl. Phys. Lett. 73, 2465 (1998).

31.J. Qian , C. Pantea , G. Voronin , and T.W. Zerda , J. Appl. Phys. 90, 1632 (2001).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×