Skip to main content

High-voltage operation of binder-free CNT supercapacitors using ionic liquid electrolytes

  • Sanliang Zhang (a1), Sean Brahim (a1) and Stefan Maat (a1)

High-voltage (≥4.0 V) operation of supercapacitor devices was demonstrated using carbon nanotubes as active electrode materials combined with room temperature ionic liquids as electrolyte. Pouch cells were assembled with four different ionic liquids, 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM-BF4), diethyl-N-methyl-N-(2-methoxyethyl) ammonium bis(trifluoromethanesulfonyl)imide (DEME-TFSI), diethyl-N-methyl-N-(2-methoxyethyl)ammonium tetrafluoroborate (DEME-BF4), and 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14-TFSI). Cyclic voltammetry showed the maximum operational voltage to be 4.5 V for DEME-TFSI and 4.7 V for DEME-BF4. Compared to electric double layer capacitor (EDLC) cells using propylene carbonate electrolyte at 2.7 V, capacitance increased by 20% using BMIM-BF4 at 4.0 V, DEME-TFSI at 4.5 V, DEME-BF4 at 4.7 V, and Pyr14-TFSI at 4.3 V, with tripling of energy density and comparable power density using Pyr14-TFSI-based EDLCs. Long-term cyclability using BMIM-BF4 ionic liquid electrolyte operating at 4.0 V showed retention of >80% of initial capacitance after 65,000 continuous cycles without doubling of initial cell equivalent series resistance.

Corresponding author
a) Address all correspondence to this author. e-mail:
Hide All

Contributing Editor: Teng Zhai

Hide All
1. Ruch P.W., Cericola D., Foelske-Schmitz A., Kötz R., and Wokaun A.: Aging of electrochemical double layer capacitors with acetonitrile-based electrolyte at elevated voltages. Electrochim. Acta 55, 4412 (2010).
2. Chiba K., Ueda T., Yamaguchi Y., Oki Y., Saiki F., and Naoi K.: Electrolyte systems for high withstand voltage and durability II. Alkylated cyclic carbonates for electric double-layer capacitors. J. Electrochem. Soc. 12, A1320 (2011).
3. Naoi K., Ishimoto S., Miyamoto J., and Naoi W.: Second generation ‘nanohybrid supercapacitor’: Evolution of capacitive energy storage devices. Energy Environ. Sci. 5, 9363 (2012).
4. Chen T. and Dai L.: Carbon nanomaterials for high-performance supercapacitors. Mater. Today 16, 272 (2013).
5. Baughman R., Zakhidov A., and de Heer W.A.: Carbon nanotubes—The route toward applications. Science 279, 787 (2002).
6. Kaempgen M., Chan C., Ma J., Cui Y., and Gruner G.: Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett. 9, 1872 (2009).
7. An K.H., Kim W.S., Park Y.S., Choi Y.C., Lee S.M., Chung D.C., Bae D.J., Lim S.C., and Lee Y.H.: Supercapacitors using single-walled carbon nanotube electrodes. Adv. Mater. 13, 497 (2001).
8. Frackowiak E., Jurewicz K., Delpeux S., and Beguin F.: Nanotubular materials for supercapacitors. J. Power Sources 97, 822 (2001).
9. Hu L., Cho J.W., Yang Y., Jeong S., Mantia F.L., Cui L-F., and Cui Y.: Highly conductive paper for energy-storage devices. PNAS 106, 21490 (2009).
10. Tortorich R. and Choi J-W.: Inkjet printing of carbon nanotubes. Nanomaterials 3, 453 (2013).
11. Shi K. and Zhitomirsky I.: Fabrication of polypyrrole-coated carbon nanotubes using oxidant-surfactant nanocrystals for supercapacitor electrodes with high mass loading and enhanced performance. ACS Appl. Mater. Interfaces 5, 13161 (2013).
12. Rangom Y., Tang X., and Nazar L.: Carbon nanotube-based supercapacitors with excellent ac line filtering and rate capability via improved interfacial impedance. ACS Nano 9, 7248 (2015).
13. Zhou D., Wang H., Mao N., Chen Y., Zhou Y., Yin T., Xie H., Liu W., Chen S., and Wang X.: High energy supercapacitors based on interconnected porous carbon nanosheets with ionic liquid electrolyte. Microporous Mesoporous Mater. 241, 202 (2017).
14. Ahn Y., Kim B., Ko J., You D., Yin Z., Kim H., Shin D., Cho S., Yoo J., and Kim Y.S.: All solid state flexible supercapacitors operating at 4 V with a cross-linked polymer-ionic liquid electrolyte. J. Mater. Chem. A 4, 4386 (2016).
15. Pandey G.P., Liu T., Hancock C., Li Y., Sun X.S., and Li J.: Thermostable gel polymer electrolyte based on succinonitrile and ionic liquid for high-performance solid-state supercapacitors. J. Power Sources 328, 510 (2016).
16. Qiao L., Shougee A., Albrecht T., and Fobelets K.: Oxide-coated silicon nanowire array capacitor electrodes in room temperature ionic liquid. Electrochim. Acta 210, 32 (2016).
17. Tiruye G.A., Muñoz-Torrero D., Palma J., Anderson M., and Marcilla R.: Performance of solid state supercapacitors based on polymer electrolytes containing different ionic liquids. J. Power Sources 326, 560 (2016).
18. Li Z., Liu J., Jiang K., and Thundat T.: Carbonized nanocellulose sustainably boosts the performance of activated carbon in ionic liquid supercapacitors. Nano Energy 25, 161 (2016).
19. Sasi R., Sarojam S., and Devaki S.J.: High performing biobased ionic liquid crystal electrolytes for supercapacitors. ACS Sustainable Chem. Eng. 4, 3535 (2016).
20. Eftekhari A.: Supercapacitors utilizing ionic liquids. Energy Storage Mater. 9, 47 (2017).
21. Schroder U., Wadhawan J.D., Compton R.G., Marken F., Suarez P.A.Z., Consorti C.S., de Souza R.F., and Dupont J.: Water-induced accelerated ion diffusion: Voltammetric studies in 1-methyl-3-[2,6-(S)-dimethylocten-2-yl] imidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium tetrafluoroborate and hexafluorophosphate ionic liquids. New J. Chem. 24, 1009 (2000).
22. Lewandowski A. and Stepniak I.: Relative molar Gibbs energies of cation transfer from a molecular liquid to ionic liquids at 298.15 K. Phys. Chem. Chem. Phys. 5, 4215 (2003).
23. Ong S.P., Andreussi O., Wu Y., Marzari N., and Ceder G.: Electrochemical windows of room-temperature ionic liquids from molecular dynamics and density functional theory calculation. Chem. Mater. 23, 2979 (2011).
24. Suarez P.A.Z., Selbach V.M., Dullius J.E.L., Einloft S., Paitnicki C.M.S., Azambuja D.S., de Souza R.F., and Dupont J.: Enlarged electrochemical window in dialkyl-imidazolium cation based room temperature air and water-stable molten salts. Electrochim. Acta 42, 2533 (1997).
25. Miyamoto J., Kanoh H., and Kaneko K.: Pore structures and adsorption characteristics of activated carbon fibers having both micro- and mesopores. Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem. 50, 1 (2005).
26. Mousavi M.P.S., Wilson B.E., Kashefolgheta S., Anderson E.L., He S., Buhlmann P., and Stein A.: Ionic liquids as electrolytes for electrochemical double-layer capacitors: Structures that optimize specific energy. ACS Appl. Mater. Interfaces 8, 3396 (2016).
27. O’Mahony A.M., Silvester D.S., Aldous L., Hardacre C., and Comton R.G.: Effect of water on the electrochemical window and potential limits of room-temperature ionic liquids. J. Chem. Eng. Data 53, 2884 (2008).
28. Kim Y., Matsuzawa Y., Ozaki S., Park K.C., Kim C., Endo M., Yoshida H., Masuda G., Sato T., and Dresselhaus M.S.: High energy-density capacitor based on ammonium salt type ionic liquids and their mixing effect by prolylene carbonate. J. Electrochem. Soc. 152, A710 (2005).
29. Sato T., Masuda G., and Takagi K.: Electrochemical properties of novel ionic liquids for electric double layer capacitor applications. Electrochim. Acta 49, 3603 (2004).
30. Maiti S., Pramanik A., and Mahanty S.: Influence of imidazolium-based ionic liquid electrolytes on the performance of nano-structured MnO2 hollow spheres as electrochemical supercapacitor. RSC Adv. 5, 41617 (2015).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 1
Total number of PDF views: 18 *
Loading metrics...

Abstract views

Total abstract views: 130 *
Loading metrics...

* Views captured on Cambridge Core between 29th December 2017 - 16th January 2018. This data will be updated every 24 hours.