Skip to main content

Hot deformation behavior and microstructural evolution of Nb–V–Ti microalloyed ultra-high strength steel

  • Ji Dong (a1), Chong Li (a1), Chenxi Liu (a1), Yuan Huang (a1), Liming Yu (a1), Huijun Li (a1) and Yongchang Liu (a2)...

The hot deformation behavior of Nb–V–Ti microalloyed ultra-high strength steel was investigated by isothermal compression at 900–1200 °C with strain rates from 0.01 to 10 s−1. The microstructure evolution and precipitation behavior were studied using an optical microscope and a transmission electron microscope Results indicate that the peak stress of experimental steel increases with increasing the strain rate and decreasing the deformation temperature. The constitutive equation of hot deformation was developed with the activation energy Q being about 407.29 kJ/mol. The processing maps were also obtained to identify the instable regions of the flow behavior and to evaluate the efficiency of hot deformation. The size of dynamically recrystallized grains increases gradually with a decrease in the strain rate. Three types of carbides were identified, namely M3C, rich-Ti MC, and rich-Nb MC. With the increase of the deformation rate, the amounts of carbides increase, and the average sizes of the carbides decrease gradually.

Corresponding author
a) Address all correspondence to these authors. e-mail:
b) e-mail:
Hide All

Contributing Editor: Jürgen Eckert

Hide All
1. Zhou Y.L., Jia T., Zhang X.J., Liu Z.Y., and Misra R.D.K.: Investigation on tempering of granular bainite in an offshore platform steel. Mater. Sci. Eng., A 626, 352 (2015).
2. Cheng X.Y., Zhang H.X., Li H., and Shen H.P.: Effect of tempering temperature on the microstructure and mechanical properties in mooring chain steel. Mater. Sci. Eng., A 636, 164 (2015).
3. Pouraliakbar H., Khalaj M., Nazerfakhari M., and Khalaj G.: Artificial neural networks for hardness prediction of HAZ with chemical composition and tensile test of X70 pipeline steels. J. Iron Steel Res. Int. 22, 446 (2015).
4. Yang Y., Peng X.D., Ren F.J., Wen H.M., Su J.F., and Xie W.D.: Constitutive modeling and hot deformation behavior of duplex structured Mg–Li–Al–Sr alloy. J. Mater. Sci. Technol. 32, 1289 (2016).
5. Shahrani A.A., Yazdipour N., Dehghan-Manshadi A., Gazder A.A., Cayron C., and Pereloma E.V.: The effect of processing parameters on the dynamic recrystallisation behaviour of API-X70 pipeline steel. Mater. Sci. Eng., A 570, 70 (2013).
6. Qian L.Y., Fang G., Zeng P., and Wang L.X.: Correction of flow stress and determination of constitutive constants for hot working of API X100 pipeline steel. Int. J. Pressure Vessels Piping 132–133, 43 (2015).
7. Quan G.Z., Zhao L., Chen T., Wang Y., Mao Y.P., Lv W.Q., and Zhou J.: Identification for the optimal working parameters of as-extruded 42CrMo high-strength steel from a large range of strain, strain rate and temperature. Mater. Sci. Eng., A 538, 364 (2012).
8. Gomez M., Valles P., and Medina S.F.: Evolution of microstructure and precipitation state during thermomechanical processing of a X80 microalloyed steel. Mater. Sci. Eng., A 528, 4761 (2011).
9. Cao Y.B., Xiao F.R., Qiao G.Y., Zhang X.B., and Liao B.: Quantitative research on effects of Nb on hot deformation behaviors of high-Nb microalloyed steels. Mater. Sci. Eng., A 530, 277 (2011).
10. Dong J., Zhou X.S., Liu Y.C., Li C., Liu C.X., and Guo Q.Y.: Carbide precipitation in Nb–V–Ti microalloyed ultra-high strength steel during tempering. Mater. Sci. Eng., A 683, 215 (2017).
11. Dong J., Zhou X.S., Liu Y.C., Li C., Liu C.X., and Li H.J.: Effects of quenching-partitioning-tempering treatment on microstructure and mechanical performance of Nb–V–Ti microalloyed ultra-high strength steel. Mater. Sci. Eng., A 690, 283 (2017).
12. Liu H.W., Rong R., Gao F., Li Z.X., Liu Y.G., and Wang Q.F.: Hot deformation behavior and microstructural evolution characteristics of Ti–44Al–5V–1Cr alloy containing (γ + α2 + B2) phases. Metals 6(12), 3 (2016).
13. Zhong H.Z., Li Z., Song M., Liang X.P., and Guo F.F.: Hot deformation behavior and microstructural evolution of Ag-containing 2519 aluminum alloy. Mater. Des. 31, 2171 (2010).
14. Zhou Y.H., Liu Y.C., Zhou X.S., Liu C.X., Yu L.M., and Li C.: Processing maps and microstructural evolution of the type 347H austenitic heat-resistant stainless steel. J. Mater. Res. 168, 2091 (2015).
15. Liu Y.C., Guo Q.Y., Li C., Mei Y.P., Zhou X.S., Huang Y., and Li H.J.: Recent progress on evolution of precipitates in Inconel 718 superalloy. Acta Metall. Sin. 52, 1259 (2016).
16. Wu K., Liu G.Q., Hu B.F., Wang C.Y., Zhang Y.W., Tao Y., and Liu J.T.: Effect of processing parameters on hot compressive deformation behavior of a new Ni–Cr–Co based P/M superalloy. Mater. Sci. Eng., A 528, 4620 (2011).
17. Prasad Y.V.R.K., Sasidhara S., and Sikka V.K.: Characterization of mechanisms of hot deformation of as-cast nickel aluminide alloy. Intermetallics 8, 987 (2000).
18. Mirzadeh H., Cabrera J.M., Prado J.M., and Najafizadeh A.: Hot deformation behavior of a medium carbon microalloyed steel. Mater. Sci. Eng., A 528, 3876 (2011).
19. Meysami M. and Mousavi S.A.A.A.: Study on the behavior of medium carbon vanadium microalloyed steel by hot compression test. Mater. Sci. Eng., A 528, 3049 (2011).
20. Kim S-L., Lee Y., Lee D-K., and Yoo T-L.: Modeling of AGS and recrystallized fraction of microalloyed medium carbon steel during hot deformation. Mater. Sci. Eng., A 355, 384 (2003).
21. Sellars C.M. and McTegart W.J.: On the mechanism of hot deformation. Acta Metall. 14, 1136 (1966).
22. Li H.Z., Wang H.J., Liang X.P., Liu H.T., and Zhang X.M.: Hot deformation and processing map of 2519A aluminum alloy. Mater. Sci. Eng., A 528(3), 384 (2011).
23. Han Y., Liu G.W., Zou D.N., Liu R., and Qiao G.J.: Deformation behavior and microstructural evolution of as-cast 904L austenitic stainless steel during hot compression. Mater. Sci. Eng., A 565, 342 (2013).
24. Zhang P., Li F., and Wang Q.: Constitutive equation and processing map for hot deformation of SiC particles reinforced metal matrix composites. J. Mater. Eng. Perform. 19(9), 1290 (2010).
25. Huang L.J., Zhang Y.Z., Liu B.X., Song X.Q., Geng L., and Wu L.Z.: Superplastic tensile characteristics of in situ TiBw/Ti6Al4V composites with novel network microstructure. Mater. Sci. Eng., A 581, 128 (2013).
26. Zhao H.T., Xu G.Q., and Xu L.: Rate-controlling mechanisms of hot deformation in a medium carbon vanadium microalloy steel. Mater. Sci. Eng., A 559, 262 (2013).
27. Mannan P., Kostryzhev A.G., Zurob H., and Pereloma E.V.: Hot deformation behaviour of Ni–30Fe–C and Ni–30Fe–Nb–C model alloys. Mater. Sci. Eng., A 641, 160 (2015).
28. Zhu Y., Feng W., Sun Y., Han Y., and Zhou Y.: Characterization of hot deformation behavior of as-cast TC21 titanium alloy using processing map. Mater. Sci. Eng., A 582(3), 1757 (2011).
29. Guo N.N., Wang L., Luo L.S., Li X.Z., Chen R.R., and Su Y.Q.: Hot deformation characteristics and dynamic recrystallization of the MoNbHfZrTi refractory high-entropy alloy. Mater. Sci. Eng., A 651, 698 (2016).
30. Kai X.Z., Chen C., Sun X.F., Wang C.M., and Zhao Y.T.: Hot deformation behavior and optimization of processing parameters of a typical high-strength Al–Mg–Si alloy. Mater. Des. 90, 1154 (2016).
31. Fréour S., Gloaguen D., Francois M., and Guillén R.: Application of inverse models and XRD analysis to the determination of Ti-17 β-phase coefficients of thermal expansion. Scr. Mater. 54, 1475 (2006).
32. Prasad Y.V.R.K. and Seshacharyulu T.: Processing maps for hot working of titanium alloys. Mater. Sci. Eng., A 243, 82 (1998).
33. Prasad Y.V.R.K. and Seshacharyulu T.: Modelling of hot deformation for microstructural control. Int. Mater. Rev. 43, 243 (1998).
34. Venugopal S., Mannan S.L., and Prasad Y.V.R.K.: On the development of instability criteria during hotworking with reference to IN 718. Mater. Sci. Eng., A 260, 63 (1993).
35. Ning Z.L., Guo S., Cao F.Y., Wang G.J., Li Z.C., and Sun J.F.: Microstructural evolution during extrusion and ECAP of a spray-deposited Al–Zn–Mg–Cu–Sc–Zr alloy. J. Mater. Sci. 45, 3023 (2010).
36. Kong Y.H., Chang P.P., Li Q., Xie X.L., and Zhu S.G.: Hot deformation characteristics and processing map of nickel-based C276 superalloy. J. Alloys Compd. 622, 738 (2015).
37. Karami M. and Mahmudi R.: Hot shear deformation constitutive analysis of an extruded Mg–6Li–1Zn alloy. Mater. Lett. 81, 235 (2012).
38. Xiao Z.B., Huang Y.C., and Liu Y.: Plastic deformation behavior and processing maps of 35CrMo steel. J. Mater. Eng. Perform. 25(3), 1219 (2016).
39. Zhou X.S., Liu C.X., Yu L.M., Liu Y.C., and Li H.J.: Phase transformation behavior and microstructural control of high-Cr martensitic/ferritic heat-resistant steels for power and nuclear plants: A review. J. Mater. Sci. Technol. 31, 235 (2015).
40. Lee W.B., Hong S.G., Park C.G., and Park S.H.: Carbide precipitation and high-temperature strength of hot-rolled high-strength, low-alloy steels containing Nb and Mo. Metall. Mater. Trans. A 33, 1689 (2002).
41. Furuhara T. and Maki T.: Variant selection in heterogeneous nucleation on defects in diffusional phase transformation and precipitation. Mater. Sci. Eng., A 312, 145 (2001).
42. Gomes M., Menina S.F., and Valles P.: Determination of driving and pinning forces for static recrystallization during hot rolling of a niobium microalloyed steel. ISIJ Int. 45, 1711 (2005).
43. Prikryl M., Kroupa A., Weatherly G., and Subramanian S.V.: Precipitation behavior in a medium carbon, ti-v-n microalloyed steel. Metall. Mater. Trans. A 27, 1149 (1996).
44. Alogab K., Matlock D., Speer J., and Kleebe H.J.: The influence of niobium microalloying on austenite grain coarsening behavior of Ti-modified SAE 8620 steel. ISIJ Int. 47, 307 (2007).
45. Fu L., Wang H., Wang W., and Shan A.D.: Austenite grain growth prediction coupling with drag and pinning effects in low carbon Nb microalloyed steels. Mater. Sci. Technol. 27, 996 (2011).
46. Alogab K.A., Matlock D.K., Speer J.G. and Kleebe H.J.: The influence of Niobium microalloyingon austenite grain coarsening behavior of Ti-modified SAE 8620 Steel. ISIJ Int. 47, 307 (2016).
47. Fernández A.L., Uranga P., López B., and Rodriguez-Ibabe J.M.: Dynamic recrystallization behavior covering a wide austenite grain size range in Nb and Nb–Ti microalloyed steels. Mater. Sci. Eng., A 361, 372 (2003).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 3
Total number of PDF views: 44 *
Loading metrics...

Abstract views

Total abstract views: 128 *
Loading metrics...

* Views captured on Cambridge Core between 12th October 2017 - 17th January 2018. This data will be updated every 24 hours.