Skip to main content
×
×
Home

Hydrothermal synthesis of gold nanoplates and their structure-dependent LSPR properties

  • Yanting Liu (a1), Lijun Yang (a2) and Yajing Shen (a3)
  • Please note a correction has been issued for this article.
Abstract

We developed a facile hydrothermal method to synthesize gold nanoplates with the assistance of surfactant cetyltrimethylammonium chloride (CTAC). Gold nanostructure shapes from triangular, truncated triangular to hexagonal morphology with different sizes can be obtained by accommodating the molar ratios of the surfactant to the gold precursor ([CTAC]/[HAuCl4]). The edge width of gold nanoplates could also be adjusted from tens to hundreds of nanometers, and even several microns. The growth mechanism analysis reveals that the surfactant CTAC directs and promotes the growth of the tabular {111} facets to form nanoplate structures with the size and shape variations. The structure-dependent localized surface plasmon resonance of different gold nanoplates was theoretically and experimentally explained by finite element method simulation and surface-enhanced Raman scattering (SERS) enhancement, respectively. Based on the Raman spectrum analysis of the marker molecule 4-mercaptobenzoic acid (4-MBA) labeled with different gold nanoplates, it demonstrates that the enhanced SERS performance relies on the different plasmonic properties of the gold nanoplates. Therefore, the gold nanoplates may have potential applications in SERS-based sensing and imaging field.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: yajishen@cityu.edu
References
Hide All
1.Murphy, C.J., Sau, T.K., Gole, A.M., Orendorff, C.J., Gao, J., Gou, L., Hunyadi, S.E., and Li, T.: Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J. Phys. Chem. B 109, 13857 (2005).
2.Kretschmer, F., Mühlig, S., Hoeppener, S., Winter, A., Hager, M.D., Rockstuhl, C., Pertsch, T., and Schubert, U.S.: Survey of plasmonic nanoparticles: From synthesis to application. Part. Part. Syst. Charact. 31, 721 (2014).
3.Ruditskiy, A. and Xia, Y.: The science and art of carving metal nanocrystals. ACS Nano 11, 23 (2017).
4.Zhao, P., Li, N., and Astruc, D.: State of the art in gold nanoparticle synthesis. Coord. Chem. Rev. 257, 638 (2013).
5.Liu, S. and Tang, Z.: Nanoparticle assemblies for biological and chemical sensing. Coord. Chem. Rev. 257, 638 (2013).
6.Pérez-Juste, J., Pastoriza-Santos, I., Liz-Marzán, L.M., and Mulvaney, P.: Gold nanorods: Synthesis, characterization and applications. Coord. Chem. Rev. 249, 1870 (2005).
7.Dreaden, E.C., Alkilany, A.M., Huang, X., Murphy, C.J., and El-Sayed, M.A.: The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 41, 2740 (2012).
8.Cui, J., Yang, L., Wang, Y., Mei, X., Wang, W., and Hou, C.: Nanospot soldering polystyrene nanoparticles with an optical fiber probe laser irradiating a metallic AFM probe based on the near-field enhancement effect. ACS Appl. Mater. Interfaces 7, 2294 (2015).
9.Vigderman, L., Khanal, B.P., and Zubarev, E.R.: Functional gold nanorods: Synthesis, self-assembly, and sensing applications. Adv. Mater. 24, 4811 (2012).
10.Skrabalak, S.E., Au, L., Li, X., and Xia, Y.: Facile synthesis of Ag nanocubes and Au nanocages. Nat. Protoc. 2, 2182 (2007).
11.Loo, C., Hirsch, L., Lee, M-H., Chang, E., West, J., Halas, N., and Drezek, R.: Gold nanoshell bioconjugates for molecular imaging in living cells. Opt. Lett. 30, 1012 (2005).
12.Shankar, S.S., Rai, A., Ankamwar, B., Singh, A., Ahmad, A., and Sastry, M.: Biological synthesis of triangular gold nanoprisms. Nat. Mater. 3, 482 (2004).
13.Huang, Y., Ferhan, A.R., Gao, Y., Dandapat, A., and Kim, D-H.: High-yield synthesis of triangular gold nanoplates with improved shape uniformity, tunable edge length and thickness. Nanoscale 6, 6496 (2014).
14.Ah, C.S., Yun, Y.J., Park, H.J., Kim, W-J., Ha, D.H., and Yun, W.S.: Size-controlled synthesis of machinable single crystalline gold nanoplates. Chem. Mater. 17, 5558 (2005).
15.Li, C.C., Cai, W.P., Cao, B.Q., Sun, F.Q., Li, Y., Kan, C.X., and Zhang, L.D.: Mass synthesis of large, single-crystal Au nanosheets based on a polyol process. Adv. Funct. Mater. 16, 83 (2006).
16.Chen, C-C., Hsu, C-H., and Kuo, P-L.: Effects of alkylated polyethylenimines on the formation of gold nanoplates. Langmuir 23, 6801 (2007).
17.Liu, X., Wu, N., Wunsch, B.H., Barsotti, R.J., and Stellacci, F.: Shape-controlled growth of micrometer-sized gold crystals by a slow reduction method. Small 2, 1046 (2006).
18.Huang, W-L., Chen, C-H., and Huang, M.H.: Investigation of the growth process of gold nanoplates formed by thermal aqueous solution approach and the synthesis of ultra-small gold nanoplates. J. Phys. Chem. C 111, 2533 (2007).
19.Chu, H-C., Kuo, C-H., and Huang, M.H.: Thermal aqueous solution approach for the synthesis of triangular and hexagonal gold nanoplates with three different size ranges. Inorg. Chem. 45, 808 (2006).
20.Grzelczak, M., Perez-Juste, J., Mulvaney, P., and Liz-Marzan, L.M.: Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 37, 1783 (2008).
21.Sau, T.K. and Rogach, A.L.: Nonspherical noble metal nanoparticles: Colloid-chemical synthesis and morphology control. Adv. Mater. 22, 1781 (2010).
22.Yang, Z., Li, Z., Lu, X., He, F., Zhu, X., Ma, Y., He, R., Gao, F., Ni, W., and Yi, Y.: Controllable biosynthesis and properties of gold nanoplates using yeast extract. Nano-Micro Lett. 9, 5 (2016).
23.Cui, J., Zhang, J., Wang, X., Barayavuga, T., He, X., Mei, X., Wang, W., Jiang, G., and Wang, K.: Near-field optical characteristics of Ag nanoparticle within the near-field scope of a metallic AFM tip irradiated by SNOM laser. Integr. Ferroelectr. 178, 117 (2017).
24.Chen, S., Xu, P., Li, Y., Xue, J., Han, S., Ou, W., Li, L., and Ni, W.: Rapid seedless synthesis of gold nanoplates with microscaled edge length in a high yield and their application in SERS. Nano-Micro Lett. 8, 328 (2016).
25.Liu, Y., Zhou, J., Yuan, X., Jiang, T., Petti, L., Zhou, L., and Mormile, P.: Hydrothermal synthesis of gold polyhedral nanocrystals by varying surfactant concentration and their LSPR and SERS properties. RSC Adv. 5, 68668 (2015).
26.Ha, T.H., Kim, Y.J., and Park, S.H.: Complete separation of triangular gold nanoplates through selective precipitation under CTAB micelles in aqueous solution. Chem. Commun. 46, 3164 (2010).
27.James, K., O’Toole, M., Patel, D., Zhang, G., Gobin, A., and Keynton, R.: A high yield, controllable process for producing tunable near infrared-absorbing gold nanoplates. RSC Adv. 5, 12498 (2015).
28.Personick, M.L. and Mirkin, C.A.: Making sense of the mayhem behind shape control in the synthesis of gold nanoparticles. J. Am. Chem. Soc. 135, 18238 (2013).
29.Rai, A., Singh, A., Ahmad, A., and Sastry, M.: Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles. Langmuir 22, 736 (2006).
30.Wuithschick, M., Birnbaum, A., Witte, S., Sztucki, M., Vainio, U., Pinna, N., Rademann, K., Emmerling, F., Kraehnert, R., and Polte, J.: Turkevich in new robes: Key questions answered for the most common gold nanoparticle synthesis. ACS Nano 9, 7052 (2015).
31.Liu, H. and Yang, Q.: A two-step temperature-raising process to gold nanoplates with optical and surface enhanced Raman spectrum properties. CrystEngComm 13, 2281 (2011).
32.Liu, Y. and Shen, Y.: Hydrothermal synthesis of gold nanoplates with different size ranges. In Nanotechnology (IEEE-NANO), 2017 IEEE 17th International Conference on IEEE, Vol. 816, Li, G., ed. (IEEE, USA, 2017); pp. 816817.
33.Ji, X., Song, X., Li, J., Bai, Y., Yang, W., and Peng, X.: Size control of gold nanocrystals in citrate reduction: The third role of citrate. J. Am. Chem. Soc. 129, 13939 (2007).
34.Kaur, P. and Chudasama, B.: Single step synthesis of pluronic stabilized IR responsive gold nanoplates. RSC Adv. 4, 36006 (2014).
35.Michota, A. and Bukowska, J.: Surface-enhanced Raman scattering (SERS) of 4-mercaptobenzoic acid on silver and gold substrates. J. Raman Spectrosc. 34, 21 (2003).
36.Ho, C-H. and Lee, S.: SERS and DFT investigation of the adsorption behavior of 4-mercaptobenzoic acid on silver colloids. Colloids Surf., A 474, 29 (2015).
37.Ding, S-Y., Yi, J., Li, J-F., Ren, B., Wu, D-Y., Panneerselvam, R., and Tian, Z-Q.: Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 1, 16021 (2016).
38.Cui, J., Yang, L., and Wang, Y.: Simulation study of near-field enhancement on a laser-irradiated AFM metal probe. Laser Phys. 23, 076003 (2013).
39.Johnson, P., Johnson, P.B., and Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6, 4370 (1972).
40.Álvarez-Puebla, R.A.: Effects of the excitation wavelength on the SERS spectrum. J. Phys. Chem. Lett. 3, 857 (2012).
41.Zhang, Q., Large, N., and Wang, H.: Gold nanoparticles with tipped surface structures as substrates for single-particle surface-enhanced Raman spectroscopy: Concave nanocubes, nanotrisoctahedra, and nanostars. ACS Appl. Mater. Interfaces 6, 17255 (2014).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed