Skip to main content
×
×
Home

Influence of the admicelled poly(methyl methacrylate) on the compatibility and toughness of poly(lactic acid)

  • Angkana Pongpilaipruet (a1) and Rathanawan Magaraphan (a1)
Abstract

Admicellar polymerization, a novel technique for surface modification, was used in this work to enhance the compatibility between polymers with obviously different polarities, e.g., natural rubber (NR) and polylactic acid (PLA). The admicellar polymerization of methyl methacrylate over NR substrates (using potassium peroxodisulfate as an initiator) so-called poly(methyl methacrylate)–natural rubber (PMMA-ad-NR) was prepared and mixed with PLA at different contents (5, 10, and 15 wt%) in comparison to the simple PLA/NR blends. The monomer to initiator ratio was varied: 25:1, 50:1, and 100:1 corresponding to the admicelled PMMA molecular weight of 20,000, 30,000, and 40,000 g/mol, respectively. All PLA/PMMA-ad-NR blends showed good compatibility as evident by FE-SEM results revealing smooth boundary of PMMA-ad-NR domains in the PLA matrix. Moreover, the mechanical properties and thermal stability of PLA/PMMA-ad-NR blends were higher than those of PLA/NR blends, especially with increasing PMMA-ad-NR content up to 10 wt%. It was clear that the lowest molecular weight of the admicelled PMMA gave the highest toughness of PLA/PMMA-ad-NR blends.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: rathanawan.k@chula.ac.th
Footnotes
Hide All

Contributing Editor: Amit Bandyopadhyay

Footnotes
References
Hide All
1. Yu, L., Dean, K., and Li, L.: Polymer blends and composites from renewable resources. Prog. Polym. Sci. 31, 576 (2006).
2. Lim, L.T., Auras, R., and Rubino, M.: Processing technologies for poly(lactic acid). Prog. Polym. Sci. 33, 820 (2008).
3. Djellali, S., Haddaoui, N., Sadoun, T., Bergeret, A., and Grohens, Y.: Structural, morphological and mechanical characteristics of polyethylene, poly(lactic acid) and poly(ethylene-co-glycidyl methacrylate) blends. Iran. Polym. J. 22, 245 (2013).
4. Yasuniwa, M., Tsubakihara, S., Iura, K., Ono, Y., Dan, Y., and Takahashi, K.: Crystallization behavior of poly(l-lactic acid). Polymer 47, 7554 (2006).
5. Likittanaprasong, N., Seadan, M., and Suttiruengwong, S.: Impact property enhancement of poly(lactic acid) with different flexible copolymers. IOP Conf. Ser. Mater. Sci. Eng. 87, 012069 (2015).
6. Meng, B., Tao, J., Deng, J., Wu, Z., and Yang, M.: Toughening of polylactide with higher loading of nano-titania particles coated by poly(ε-caprolactone). Mater. Lett. 65, 729 (2011).
7. Zhang, C., Man, C., Pan, Y., Wang, W., Jiang, L., and Dan, Y.: Toughening of polylactide with natural rubber grafted with poly(butyl acrylate). Polym. Int. 60, 1548 (2011).
8. Jaratrotkamjorn, R., Khaokong, C., and Tanrattanakul, V.: Toughness enhancement of poly(lactic acid) by melt blending with natural rubber. J. Appl. Polym. Sci. 124, 5027 (2012).
9. Bitinis, N., Verdejo, R., Cassagnau, P., and Lopez-Manchado, M.A.: Structure and properties of polylactide/natural rubber blends. Mater. Chem. Phys. 129, 823 (2011).
10. Nagarajan, V., Mohanty, A.K., and Misra, M.: Perspective on polylactic acid (PLA) based sustainable materials for durable applications: Focus on toughness and heat resistance. ACS Sustain. Chem. Eng. 4, 2899 (2016).
11. Juntuek, P., Ruksakulpiwat, C., Chumsamrong, P., and Ruksakulpiwat, Y.: Effect of glycidyl methacrylate-grafted natural rubber on physical properties of polylactic acid and natural rubber blends. J. Appl. Polym. Sci. 125, 745 (2012).
12. Pongpilaipruet, A. and Magaraphan, R.: Synthesis, characterization and degradation behavior of admicelled polyacrylate-natural rubber. Mater. Chem. Phys. 160, 194 (2015).
13. Hao, X., Kaschta, J., Liu, X., Pan, Y., and Schubert, D.W.: Entanglement network formed in miscible PLA/PMMA blends and its role in rheological and thermo-mechanical properties of the blends. Polymer 80, 38 (2015).
14. Le, K-P., Lehman, R., Remmert, J., Vanness, K., Ward, P.M.L., and Idol, J.D.: Multiphase blends from poly(L-lactide) and poly(methyl mathacrylate). J. Biomater. Sci., Polym. Ed. 17, 121 (2006).
15. Anakabe, J., Zaldua Huici, A.M., Eceiza, A., and Arbelaiz, A.: Melt blending of polylactide and poly(methyl methacrylate): Thermal and mechanical properties and phase morphology characterization. J. Appl. Polym. Sci. 132, 42677 (2015).
16. Samuel, C., Raquez, J-M., and Dubois, P.: PLLA/PMMA blends: A shear-induced miscibility with tunable morphologies and properties? Polymer 54, 3931 (2013).
17. Imre, B., Renner, K., and Pukanszky, B.: Interactions, structure and properties in poly(lactic acid)/thermoplastic polymer blends. Express Polym. Lett. 8, 2 (2014).
18. El-Hadi, A.M.: The effect of additives interaction on the miscibility and crystal structure of two immiscible biodegradable polymers. Polímeros 24, 9 (2014).
19. Odelius, K., Ohlson, M., Höglund, A., and Albertsson, A-C.: Polyesters with small structural variations improve the mechanical properties of polylactide. J. Appl. Polym. Sci. 127, 27 (2013).
20. Cheah, P., Bhikha, C.N., Haver, J.H., and Smith, A.E.: Effect of oxygen and initiator solubility on admicellar polymerization of styrene on silica surfaces. Int. J. Polym. Sci. 2017, 7 (2017).
21. Chen, Y. and Sajjadi, S.: Particle formation and growth in ab initio emulsifier-free emulsion polymerisation under monomer-starved conditions. Polymer 50, 357 (2009).
22. Anancharungsuk, W., Tanpantree, S., Sruanganurak, A., and Tangboriboonrat, P.: Surface modification of natural rubber film by UV-induced graft copolymerization with methyl methacrylate. J. Appl. Polym. Sci. 104, 2270 (2007).
23. Wei, S-Q., Bai, Y-P., and Shao, L.: A novel approach to graft acrylates onto commercial silicones for release film fabrications by two-step emulsion synthesis. Eur. Polym. J. 44, 2728 (2008).
24. Gebreyesus, M.A., Purushotham, Y., and Kumar, J.S.: Preparation and characterization of lithium ion conducting polymer electrolytes based on a blend of poly(vinylidene fluoride-co-hexafluoropropylene) and poly(methyl methacrylate). Heliyon 2, e00134 (2016).
25. Mohamad Sadeghi, G.M., Morshedian, J., and Barikani, M.: The effect of initiator-to-monomer ratio on the properties of the polybutadiene-ol synthesized by free radical solution polymerization of 1,3-butadiene. Polym. Int. 52, 1083 (2003).
26. Tanrisever, T., Okay, O., and Sönmezoğlu, I.Ç.: Kinetics of emulsifier-free emulsion polymerization of methyl methacrylate. J. Appl. Polym. Sci. 61, 485 (1996).
27. Ng, Y-H., di Lena, F., and Chai, C.L.L.: PolyPEGA with predetermined molecular weights from enzyme-mediated radical polymerization in water. Chem. Commun. 47, 6464 (2011).
28. Chumeka, W., Tanrattanakul, V., Pilard, J-F., and Pasetto, P.: Effect of poly(vinyl acetate) on mechanical properties and characteristics of poly(lactic acid)/natural rubber blends. J. Polym. Environ. 21, 450 (2013).
29. Thongpin, C., Klatsuwan, S., Borkchaiyapoom, P., and Thongkamwong, S.: Crystallization behavior of PLA in PLA/NR compared with dynamic vulcanized PLA/NR. J. Met., Mater. Miner. 23, 53 (2013).
30. Bhatia, A., Gupta, R., Bhattacharya, S., and Choi, H.: Compatibility of biodegradable poly(lactic acid) (PLA) and poly(butylene succinate) (PBS) blends for packaging application. Korea Aust. Rheol. J. 19, 125 (2007).
31. Pongtanayut, K., Thongpin, C., and Santawitee, O.: The effect of rubber on morphology, thermal properties and mechanical properties of PLA/NR and PLA/ENR blends. Energy Procedia 34, 888 (2013).
32. Li, S., Yuan, H., Yu, T., Yuan, W., and Ren, J.: Flame-retardancy and anti-dripping effects of intumescent flame retardant incorporating montmorillonite on poly(lactic acid). Polym. Adv. Technol. 20, 1114 (2009).
33. Teoh, E.L., Mariatti, M., and Chow, W.S.: Thermal and flame resistant properties of poly(lactic acid)/poly(methyl methacrylate) blends containing halogen-free flame retardant. Procedia Chem. 19, 795 (2016).
34. Ayutthaya, W.D.N. and Poompradub, S.: Thermal and mechanical properties of poly(lactic acid)/natural rubber blend using epoxidized natural rubber and poly(methyl methacrylate) as co-compatibilizers. Macromol. Res. 22, 686 (2014).
35. Lin, C.T., Kuo, S.W., Huang, C.F., and Chang, F.C.: Glass transition temperature enhancement of PMMA through copolymerization with PMAAM and PTCM mediated by hydrogen bonding. Polymer 51, 883 (2010).
36. Zhang, C., Wang, W., Huang, Y., Pan, Y., Jiang, L., Dan, Y., Luo, Y., and Peng, Z.: Thermal, mechanical and rheological properties of polylactide toughened by expoxidized natural rubber. Mater. Des. 45, 198 (2013).
37. Zhang, G., Zhang, J., Wang, S., and Shen, D.: Miscibility and phase structure of binary blends of polylactide and poly(methyl methacrylate). J. Polym. Sci., Part B: Polym. Phys. 41, 23 (2003).
38. Fukushima, K., Tabuani, D., and Camino, G.: Nanocomposites of PLA and PCL based on montmorillonite and sepiolite. Mater. Sci. Eng., C 29, 1433 (2009).
39. Yokohara, T. and Yamaguchi, M.: Structure and properties for biomass-based polyester blends of PLA and PBS. Eur. Polym. J. 44, 677 (2008).
40. Bitinis, N., Sanz, A., Nogales, A., Verdejo, R., Lopez-Manchado, M.A., and Ezquerra, T.A.: Deformation mechanisms in polylactic acid/natural rubber/organoclay bionanocomposites as revealed by synchrotron X-ray scattering. Soft Matter 8, 8990 (2012).
41. Trapper, P. and Volokh, K.Y.: Cracks in rubber. Int. J. Solid Struct. 45, 6034 (2008).
42. Zhao, Q., Ding, Y., Yang, B., Ning, N., and Fu, Q.: Highly efficient toughening effect of ultrafine full-vulcanized powdered rubber on poly(lactic acid)(PLA). Polym. Test. 32, 299 (2013).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Pongpilaipruet and Magaraphan supplementary material
Figure S1 and Tables SI-SII

 Word (111 KB)
111 KB

Metrics

Full text views

Total number of HTML views: 9
Total number of PDF views: 48 *
Loading metrics...

Abstract views

Total abstract views: 203 *
Loading metrics...

* Views captured on Cambridge Core between 4th March 2018 - 15th August 2018. This data will be updated every 24 hours.