Skip to main content
    • Aa
    • Aa

Interfacial phenomena involving liquid metals and solid oxides in the Mg–Al–O system

  • D. A. Weirauch (a1)

The wetting of ceramic surfaces by aluminum alloys has been reexamined using a chemical system where interfacial reactions and oxide film effects could be isolated. The system Al–Mg–O was chosen since it is technologically important and high-purity, well-characterized materials are readily available. Magnesium alloyed with the aluminum sessile drop and silicon picked up from the experimental apparatus cause an initial reduction in contact angle by altering the protective nature of the oxide film formed on the sessile drop. Evidence of spreading is observed as an intermediate process in the reactive sessile drop pairs. Reaction products formed between the Al–Mg alloys and sapphire (Al2O3), spinel (MgAl2O4), or periclase (MgO) can be interpreted with predicted phase equilibria and the measured loss of magnesium from the sessile drop. Only the rate of the periclase alloy interaction was rapid enough to result in a continuous product layer after 24 h at 800 °C. The volatilization of all of the magnesium from the sessile drop resulted in the formation of a true Al–Al2O3 interface. The contact angle for a true Al–Al2O3 interface is 88 ± 5 deg at 800 °C. The liquid-solid interfacial energy is 1688 ergs/cm2.

Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

4 H. John and H. Hausner Int. J. High Tech. Ceram. 2, 73 (1986).

5 H. John and H. Hausner J. Mater. Sci. Lett. 5, 549 (1986).

7 N. Eustathopoulos J. C. Joud P. Desre , and M. Hicter J. Mater. Sci. 9, 1233 (1974).

10 J. J. Brennan and J. A. Pask J. Am. Ceram. Soc. 51, 569 (1968).

12 A. J. McEvoy R. H. Williams and I. G. Higginbotham J. Mater. Sci. 11, 297 (1976).

13 A. Munitz M. Metzger and R. Mehrabian Metall. Trans. A 10, 1491 (1979).

14 J. G. Lindsay W. T. Bakker and E. W. Dewing J. Am. Ceram. Soc. 47, 90 (1964).

16 W. W. Smeltzer J. Electrochem. Soc. 105, 67 (1958).

17 M. Drouzy and C. Mascre Metall. Rev. 14, 25 (1969).

18 C. N. Cochran D. L. Belitskus and D. L. Kinosz Metall. Trans. B 8, 323 (1977).

21 M. Singh and R. Kumar J. Mater. Sci. 8, 317 (1973).

26 J. A. Champion B. J. Keene and J. M. Sillwood J. Mater. Sci. 4, 39 (1969).

27 T. M. French and G. A. Somorjai J. Phys. Chem. 74, 2489 (1970).

28 R. S. Wagner and W. C. Ellis Appl. Phys. Lett. 4, 89 (1964).

30 H. Yanagida and F. A. Kroger J. Am. Ceram. Soc. 51, 700 (1968).

31 W. W. Webb and W. D. Forgeng J. Appl. Phys. 28, 1449 (1957).

32 W. L. Winterbottom and G. A. Gilmour J. Vac. Sci. Technol. 13, 634 (1976).

34 I. A. Aksay C. E. Hoge and J. A. Pask J. Phys. Chem. 78, 1178 (1974).

35 T. P. Yin J. Phys. Chem. 73, 2413 (1969).

39 M. S. Newkirk A. W. Urquhart and H. R. Zwicker J. Mater. Res. 1, 81 (1986).

41 D. Beruto L. Barco and G. Belled Cermurgia Int. 1, 87 (1975).

42 C. Garcia-Cordovilla , E. Louis and A. Pamies J. Mater. Sci. 21, 2787 (1986).

45 P. Nikolopoulos J. Mater. Sci. 20, 3993 (1985).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 25 *
Loading metrics...

Abstract views

Total abstract views: 83 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 27th June 2017. This data will be updated every 24 hours.