Skip to main content

Investigation on the properties of hybrid CH3NH3Sn x I3 (0.9 ≤ x ≤ 1.4) perovskite systems

  • Lucangelo Dimesso (a1), Maximilian Stöhr (a1), Chittaranjan Das (a1), Thomas Mayer (a1) and Wolfram Jaegermann (a1)...

Methylammonium-tin-iodide (MASn x I3, 0.9 ≤ x ≤ 1.4) systems were prepared by self assembly process in aqueous solutions. The “as-prepared” MASn x I3 systems exhibit a crystalline tetragonal structure (space group I4cm) with polyhedral-shaped crystallites. The as-prepared samples were annealed at T = 150 °C, t = 8 h under nitrogen and synthetic air. Under nitrogen, the CH3NH3Sn x I3 systems adopted a cubic crystalline structure (space group P4mm) with crystallites of 2–4 μm length, whereas under air, the formation of noncrystalline phases was observed. The optical absorption spectra displayed absorption edges at 1107.0 nm (x = 0.9), 1098.6 nm (x = 1.0), and 1073.2 nm (x = 1.1), respectively, whereas at higher Sn-content (x ≥ 1.2), a broad tail of the absorbance profile was observed. The photoluminescence (PL) emission spectra (RT, λexc = 500 nm) showed major PL-events over 1 µm range and the appearance of additional bands at increasing the Sn-content. The fabrication of layers with a semiconducting behavior was demonstrated.

Corresponding author
a) Address all correspondence to this author. e-mail:
Hide All

Contributing Editor: Sam Zhang

Hide All
1. Green M.A., Emery K., Hishikawa Y., Warta W., and Dunlop E.D.: Solar cell efficiency tables (version 48). Prog. Photovoltaics 24, 905913 (2016).
2. Kojima A., Teshima K., Shirai Y., and Miyasaka T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 60506051 (2009).
3. Binek A., Petrus M.L., Huber N., Bristow H., Hu Y., Bein T., and Docampo P.: Recycling perovskite solar cells to avoid lead waste. ACS Appl. Mater. Interfaces 8, 1288112886 (2016).
4. Schmidt T.M., Larsen-Olsen T.T., Carle J.E., Angmo D., and Krebs F.C.: Upscaling of perovskite solar cells: Fully ambient roll processing of flexible perovskite solar cells with printed back electrodes. Adv. Energy Mater. 5, 1500569 (2015).
5. Dimesso L., Dimamay M., Hamburger M., and Jaegermann W.: Properties of CH3NH3PbX3 (X = I, Br, Cl) powders as precursors for organic/inorganic solar cells. Chem. Mater. 26, 67626770 (2014).
6. Dimesso L., Kim Y.M., and Jaegermann W.: Investigation of formamidinium and guanidinium lead tri-iodide powders as precursors for solar cells. Mater. Sci. Eng., B 204, 2733 (2016).
7. Boix P.P., Agarwala S., Ming Koh T., Mathews N., and Mhaisalkar S.G.: Perovskite solar cells: Beyond methylammonium lead iodide. J. Phys. Chem. Lett. 6, 898907 (2015).
8. Benmessaoud I.R., Mahul-Mellier A-L., Horvath E., Maco B., Spina M., Lashuel H., and Forro L.: Health hazard of the methylammonium lead iodide based perovskites: Cytotoxicity studies. Toxicol. Res. 5, 407419 (2016).
9. Needleman H.: Lead poisoning. Annu. Rev. Med. 55, 209222 (2004).
10. Toscano C.D. and Guilarte T.R.: Lead neurotoxicity: From exposure to molecular effects. Brain Res. Rev. 49, 529554 (2005).
11. Pourrut B., Shahid M., Dumat C., Winterton P., and Pinelli E.: Lead uptake, toxicity, and detoxification in plants. Rev. Environ. Contam. Toxicol. 213, 113136 (2011).
12. Ogomi Y., Morita A., Tsukamoto S., Saitho T., Fujikawa N., Shen Q., Toyoda T., Yoshino K., Pandey S.S., Ma T., and Hayase S.: CH3NH3Sn x Pb(1−x)I3 perovskite solar cells covering up to 1060 nm. J. Phys. Chem. Lett. 5, 10041011 (2014).
13. Conings B., Drijkoningen J., Gauquelin N., Babayigit A., D’Haen J., D’Olieslaeger L., Ethirajan A., Verbeeck J., Manca J., Mosconi E., De Angelis F., and Boyen H.G.: Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater. 5, 1500477 (2015).
14. Liu C., Fan J., Li H., Zhang C., and Mai Y.: Highly efficient perovskite solar cells with substantial reduction of lead content. Sci. Rep. 6, 35705 (2016).
15. Dimesso L., Das C., Stoehr M., Mayer T., and Jaegermann W.: Effect of the annealing atmosphere on the properties of cesium tin iodide (CsSnI3) systems. Mater. Chem. Phys. 197, 2735 (2017).
16. Scaife D., Weller P., and Fisher W.: Crystal preparation and properties of cesium tin(II) trihalides. J. Solid State Chem. 9, 308314 (1974).
17. Foster L.S., Nahas H.G., and Lineken E.E.: Hydriodic acid: Regeneration of oxidized solutions. In Inorganic Syntheses, Vol. 2, Fernelius W.C., ed. (John Wiley & Sons, Inc., Hoboken, NJ, USA, 1946).
18. Dang Y., Zhou Y., Liu X., Ju D., Xia S., Xia H., and Tao X.: Formation of hybrid perovskite tin iodide single crystals by top-seeded solution growth. Angew. Chem., Int. Ed. 55, 34473450 (2016).
19. Bartenev G.M., Suzdalev I.P., and Tsyganov A.D.: Mössbauer effect study of the structure of inorganic glasses. Phys. Status Solidi 37, 7378 (1970).
20. Dimesso L., Fasel C., Lakus-Wollny K., Mayer T., and Jaegermann W.: Thermal (in)-stability of lead-free CH3NH3Sn x I3 systems (0.9 ≤ x ≤ 1.1) prepared by solution method for photovoltaics. Mater. Sci. Semicond. Process. 68, 152158 (2017).
21. Mitzi D.B.: Synthesis, crystal structure, and optical and thermal properties of (C4H9NH3)2MI4 (M = Ge, Sn, Pb). Chem. Mater. 8, 791800 (1996).
22. Brunetti B., Cavallo C., Ciccioli A., Gigli G., and Latini A.: On the thermal and thermodynamic (in)stability of methylammonium lead halide perovskites. Sci. Rep. 6, 31896 (2016).
23. Stoumpos C.C., Malliakas C.D., and Kanatzidis M.G.: Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 90199038 (2013).
24. Noel N.K., Stranks S.D., Abate A., Wehrenfennig C., Guarnera S., Haghighirad A.A., Sadhanala A., Eperon G.E., Pathak S.K., Johnston M.B., Petrozza A., Herza L.M., and Snaith H.J.: Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7, 30613068 (2014).
25. Ju M.G., Sun G., Zhaob Y., and Liang W.Z.: A computational view of the change in the geometric and electronic properties of perovskites caused by the partial substitution of Pb by Sn. Phys. Chem. Chem. Phys. 17, 1767917687 (2015).
26. Li H. and Oshima Y.: Elementary reaction mechanism of methylamine oxidation in supercritical water. Ind. Eng. Chem. Res. 44, 87568764 (2005).
27. Kittel C.: Introduction to Solid State Physics, 6th ed., Vol. 185 (John Wiley, New York, USA, 1986).
28. Hao F., Stoumpos C.C., Cao D.H., Chang R.P.H., and Kanatzidis M.G.: Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 8, 489494 (2014).
29. Novosad S.S. and Kovalyuk R.O.: Absorption, luminescence, and electronic properties of CdI2:Sn2+ crystals. Inorg. Mater. 33, 11831188 (1997).
30. Howie R.A., Moser W., and Trevena I.C.: The crystal structure of tin(II) iodide. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 28, 29652971 (1972).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary Materials

Dimesso et al. supplementary material
Dimesso et al. supplementary material 1

 Word (7.1 MB)
7.1 MB


Full text views

Total number of HTML views: 8
Total number of PDF views: 21 *
Loading metrics...

Abstract views

Total abstract views: 111 *
Loading metrics...

* Views captured on Cambridge Core between 7th November 2017 - 24th November 2017. This data will be updated every 24 hours.