Skip to main content
×
×
Home

Investigations into the slip behavior of zirconium diboride

  • Brett Hunter (a1), Xiao-Xiang Yu (a1), Nicholas De Leon (a1), Christopher Weinberger (a2), William Fahrenholtz (a3), Greg Hilmas (a3), Mark L. Weaver (a1) and Gregory B. Thompson (a1)...
Abstract
Abstract

The slip systems in ZrB2 flexural tested at 1000 °C and 1500 °C have been quantified. The dislocations in both samples were long and straight with a dislocation density of approximately 1013 m−2. The structure of the dislocations as well as the low density is in agreement with a ceramic that is hard and brittle and dislocation nucleation and motion is restricted. The low temperature slip systems were found to include c-prismatic slip— ${1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}\left[ {0001} \right]\left( {\bar 1010} \right)$ —and a-pyramidal slip— ${1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}\left[ {11\bar 20} \right]\left( {\bar 1101} \right)$ whereas the elevated temperature sample revealed a-basal slip— ${1 \mathord{\left/ {\vphantom {1 3}} \right. \kern-\nulldelimiterspace} 3}\left[ {11\bar 20} \right]\left( {0001} \right)$ . Density functional theory Generalized Stacking Fault Energy curves for perfect slip were calculated and agreed well with geometric considerations for slip, including interplanar spacing and planar packing. Though basal slip has the lowest fault energy, the presence of the other dislocation types is suggestive that the activation barrier is not a hindrance for the temperatures studied and is likely activated to increase the number of plastic degrees of freedom.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: gthompson@eng.ua.edu
References
Hide All
1. Upadhya K., Yang J.M., and Hoffman W.P.: Materials for ultrahigh temperature structural applications. Am. Ceram. Soc. Bull. 76, 51 (1997).
2. Fahrenholtz W.G., Hilmas G.E., Talmy I.G., and Zaykoski J.A.: Refractory diborides of zirconium and hafnium. J. Am. Ceram. Soc. 90, 1347 (2007).
3. Kim C., Gottstein G., and Grummon D.S.: Plastic flow and dislocation structures in tantalum carbide: Deformation at low and intermediate homologous temperatures. Acta Metall. Mater. 42, 2291 (1994).
4. Campbell I.E. and Sherwood E.M.: High-Temperature Materials and Technology (John Wiley & Sons, Hoboken, 1967).
5. Steinitz R.: Mechanical properties of refractory carbides at high temperatures. In Nuclear Applications of Nonfissional Ceramics, A. Boltax and J.H. Handwerk, eds. (American Nuclear Society, Hinsdale, 1966); p. 75.
6. De Leon N., Wang B., Weinberger C.R., Matson L.E., and Thompson G.B.: Elevated-temperature deformation mechanisms in Ta2C: An experimental study. Acta Mater. 61, 3905 (2013).
7. De Leon N., Yu X-X., Yu H., Weinberger C.R., and Thompson G.B.: Bonding effects on the slip differences in the $B1$ monocarbides. Phys. Rev. Lett. 114, 165502 (2015).
8. Opeka M.M., Talmy I.G., Wuchina E.J., Zaykoski J.A., and Causey S.J.: Mechanical, thermal, and oxidation properties of refractory hafnium and zirconium compounds. J. Eur. Ceram. Soc. 19, 2405 (1999).
9. Murata Y.: Cutting Tool Tips and Ceramics Containing Hafniium Nitride and Zircondium Diboride (Carborundum Co., Niagara Falls, 1970).
10. Paul A., Jayaseelan D.D., Venugopal S., Zapata-Solvas E., Binner J., Vaidhyanathan B., Heaton A., Brown P., and Lee W.E.: UHTC composites for hypersonic applications. Am. Ceram. Soc. Bull. 91, 22 (2012).
11. Norasetthekul S., Eubank P.T., Bradley W.L., Bozkurt B., and Stucker B.: Use of zirconium diboride copper as an electrode in plasma applications. J. Mater. Sci. 34, 1261 (1999).
12. Ghosh D., Subhash G., and Bourne G.R.: Room-temperature dislocation activity during mechanical deformation of polycrystalline ultra-high-temperature ceramics. Scr. Mater. 61, 1075 (2009).
13. Neuman E.W., Hilmas G.E., and Fahrenholtz W.G.: Strength of zirconium diboride to 2300 °C. J. Am. Ceram. Soc. 96, 47 (2013).
14. Watts J., Hilmas G., Fahrenholtz W.G., Brown D., and Clausen B.: Measurement of thermal residual stresses in ZrB2–SiC composites. J. Eur. Ceram. Soc. 31, 1811 (2011).
15. Haggerty J.S. and Lee D.W.: Plastic deformation of ZrB2 single crystals. J. Am. Ceram. Soc. 54, 572 (1971).
16. Ramberg J.R. and Williams W.S.: High temperature deformation of titanium diboride. J. Mater. Sci. 22, 1815 (1987).
17. Guo S-Q.: Densification of ZrB2-based composites and their mechanical and physical properties: A review. J. Eur. Ceram. Soc. 29, 995 (2009).
18. Nakano K., Matsubara H., and Imura T.: High-temperature hardness of IVa-diborides single crystals. J. Less-Common Met. 47, 259 (1976).
19. Vahldiek F.W. and Mersol S.A.: Slip and microhardness of IVa to via refractory materials. J. Less-Common Met. 55, 265 (1977).
20. Zhang X., Luo X., Han J., Li J., and Han W.: Electronic structure, elasticity and hardness of diborides of zirconium and hafnium: First principles calculations. Comput. Mater. Sci. 44, 411 (2008).
21. Kresse G. and Joubert D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B: Condens. Matter Mater. Phys. 59, 1758 (1999).
22. Kresse G. and Furthmüller J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B: Condens. Matter Mater. Phys. 54, 11169 (1996).
23. Blöchl P.E.: Projector augmented-wave method. Phys. Rev. B: Condens. Matter Mater. Phys. 50, 17953 (1994).
24. Perdew J.P., Burke K., and Ernzerhof M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).
25. Monkhorst H.J. and Pack J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B: Condens. Matter Mater. Phys. 13, 5188 (1976).
26. Neuman E.W., Hilmas G.E., and Fahrenholtz W.G.: Mechanical behavior of zirconium diboride–silicon carbide–boron carbide ceramics up to 2200 °C. J. Eur. Ceram. Soc. 35, 463 (2015).
27. Neuman E.W., Hilmas G.E., and Fahrenholtz W.G.: Elevated temperature strength enhancement of ZrB2-30 vol% SiC ceramics by postsintering thermal annealing. J. Am. Ceram. Soc. 99, 962 (2015).
28. Williams D.B. and Carter C.B.: Transmission Electron Microscopy (Springer, USA, 2009).
29. Ham R.K.: The determination of dislocation densities in thin films. Philos. Mag. 6, 1183 (1961).
30. Hull D. and Bacon D.J.: Chapter 1- defects in crystals. In Introduction to Dislocations, 5th ed., Hull D. and Bacon D.J., eds. (Butterworth-Heinemann, Oxford, 2011); p.1.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 7
Total number of PDF views: 81 *
Loading metrics...

Abstract views

Total abstract views: 289 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 24th February 2018. This data will be updated every 24 hours.