Skip to main content
×
Home

The kinetics and microstructural evolution during metadynamic recrystallization of medium carbon Cr–Ni–Mo alloyed steel

  • Chi Zhang (a1), Liwen Zhang (a2), Wenfei Shen (a2) and Yingnan Xia (a2)
Abstract
Abstract

The metadynamic recrystallization (MDRX) behavior of a medium carbon Cr–Ni–Mo alloyed steel 34CrNiMo was investigated using two-stage hot compression test on a Gleeble thermal-mechanical simulator in the temperature range of 1273–1423 K, strain rate range of 0.1–5.0 s−1, and interval times of 0.5–5 s. The softening of the flow stress at the second stage of compression and microstructure observation confirm the occurrence of MDRX at the elevated temperatures within very short interval time. Then the MDRX softening fraction was calculated based on the flow stress curves. The results indicate that the MDRX softening fraction increased with increasing interval time, deformation temperature, and strain rate. The kinetics of MDRX softening behavior was established using Avrami equation and the apparent activation energy of MDRX for 34CrNiMo steel was evaluated as 93 kJ/mol. The predicted results show good agreements with the experimental ones, indicating the efficiency of proposed kinetics equation.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: commat@mail.dlut.edu.cn
Footnotes
Hide All

Contributing Editor: Jürgen Eckert

Footnotes
References
Hide All
1. Jin X., Rong Y., and Zhong X.: Wind turbine manufacturing industry in China: Current situation and problems. Renewable Sustainable Energy Rev. 33, 729 (2014).
2. Tsai N-C. and Chiang C-W.: Spindle position regulation for wind power generators. Mech Syst Signal Process. 24(3), 873 (2010).
3. Zhang C., Zhang L., Shen W., Liu C., Xia Y., and Li R.: Study on constitutive modeling and processing maps for hot deformation of medium carbon Cr–Ni–Mo alloyed steel. Mater. Des. 90, 804 (2016).
4. Sakai T., Ohashi M., Chiba K., and Jonas J.J.: Recovery and recrystallization of polycrystalline nickel after hot working. Acta Metall. 36(7), 1781 (1988).
5. Petkovic R.A., Luton M.J., and Jonas J.J.: Recovery and recrystallization of carbon steel between intervals of hot working. Can. Metall. Q. 14(2), 137 (1975).
6. Elwazri A.M., Essadiqi E., and Yue S.: Kinetics of metadynamic recrystallization in microalloyed hypereutectoid steels. ISIJ Int. 44(4), 744 (2004).
7. Uranga P., Fernández A.I., López B., and Rodriguez-Ibabe J.M.: Transition between static and metadynamic recrystallization kinetics in coarse Nb microalloyed austenite. Mater. Sci. Eng., A 345(1–2), 319 (2003).
8. Elwazri A.M., Wanjara P., and Yue S.: Metadynamic and static recrystallization of hypereutectoid steel. ISIJ Int. 43(7), 1080 (2003).
9. Lin Y.C., Chen M.S., and Zhong J.: Study of metadynamic recrystallization behaviors in a low alloy steel. J. Mater. Process. Technol. 209(5), 2477 (2009).
10. Lin Y.C. and Chen M.S.: Study of microstructural evolution during metadynamic recrystallization in a low-alloy steel. Mater. Sci. Eng., A 501(1–2), 229 (2009).
11. Liu Y.G., Liu J., Li M.Q., and Lin H.: The study on kinetics of static recrystallization in the two-stage isothermal compression of 300M steel. Comput. Mater. Sci. 84(0), 115 (2014).
12. Liu Y.G., Li M.Q., and Luo J.: The modelling of dynamic recrystallization in the isothermal compression of 300M steel. Mater. Sci. Eng., A 574, 1 (2013).
13. Liu J., Liu Y.G., Lin H., and Li M.Q.: The metadynamic recrystallization in the two-stage isothermal compression of 300M steel. Mater. Sci. Eng., A 565(0), 126 (2013).
14. Chen F., Cui Z., Sui D., and Fu B.: Recrystallization of 30Cr2Ni4MoV ultra-super-critical rotor steel during hot deformation. Part III: Metadynamic recrystallization. Mater. Sci. Eng., A 540(0), 46 (2012).
15. Sommitsch C., Huber D., and Stockinger M.: Metadynamic recrystallization of the nickel-based superalloy Allvac 718Plus. Mater. Sci. Forum 638–642, 2327 (2010).
16. Medeiros S.C., Prasad Y.V.R.K., Frazier W.G., and Srinivasan R.: Microstructural modeling of metadynamic recrystallization in hot working of IN 718 superalloy. Mater. Sci. Eng., A 293(1–2), 198 (2000).
17. Bianchi J.H. and Karjalainen L.P.: Modelling of dynamic and metadynamic recrystallisation during bar rolling of a medium carbon spring steel. J. Mater. Process. Technol. 160(3), 267 (2005).
18. Zhou L.X. and Baker T.N.: Effects on dynamic and metadynamic recrystallization on microstructures of wrought IN-718 due to hot deformation. Mater. Sci. Eng., A 196(1–2), 89 (1995).
19. Zhang C., Zhang L., Shen W., Liu C., and Xia Y.: The kinetics of metadynamic recrystallization in a Ni–Cr–Mo-based superalloy Hastelloy C-276. J. Mater. Eng. Perform. 25(2), 545 (2016).
20. Zhang C., Zhang L., Xu Q., Xia Y., and Shen W.: The kinetics and cellular automaton modeling of dynamic recrystallization behavior of a medium carbon Cr–Ni–Mo alloyed steel in hot working process. Mater. Sci. Eng., A 678, 33 (2016).
21. Sakai T., Belyakov A., Kaibyshev R., Miura H., and Jonas J.J.: Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog. Mater. Sci. 60(0), 130 (2014).
22. Lin Y.C., Li L.T., and Xia Y.C.: A new method to predict the metadynamic recrystallization behavior in 2124 aluminum alloy. Comput. Mater. Sci. 50(7), 2038 (2011).
23. Laasraoui A. and Jonas J.J.: Recrystallization of austenite after deformation at high temperatures and strain rates—analysis and modeling. Metall. Trans. A 22(1), 151 (1991).
24. Gu S., Zhang C., Zhang L., and Shen W.: Characteristics of metadynamic recrystallization of Nimonic 80A superalloy. J. Mater. Res. 30(4), 538 (2015).
25. Roucoules C., Yue S., and Jonas J.J.: Effect of alloying elements on metadynamic recrystallization in HSLA steels. Metall. Mater. Trans. A 26(1), 181 (1995).
26. Lin Y.C., Chen X-M., Chen M-S., Zhou Y., Wen D-X., and He D-G.: A new method to predict the metadynamic recrystallization behavior in a typical nickel-based superalloy. Appl. Phys. A: Mater. Sci. Process. 122(6), 601 (2016).
27. Shen G., Semiatin S.L., and Shivpuri R.: Modeling microstructural development during the forging of Waspaloy. Metall. Mater. Trans. A 26(7), 1795 (1995).
28. Zahiri S.H., Byon S.M., Kim S-I., Lee Y., and Hodgson P.D.: Static and metadynamic recrystallization of interstitial free steels during hot deformation. ISIJ Int. 44(11), 1918 (2004).
29. Dehghan-Manshadi A., Jonas J.J., Hodgson P.D., and Barnett M.R.: Correlation between the deformation and post-deformation softening behaviours in hot worked austenite. ISIJ Int. 48(2), 208 (2008).
30. Sellars C.M. and Whiteman J.A.: Recrystallization and grain growth in hot rolling. Met. Sci. 13(3–4), 187 (1979).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 2
Total number of PDF views: 36 *
Loading metrics...

Abstract views

Total abstract views: 176 *
Loading metrics...

* Views captured on Cambridge Core between 14th March 2017 - 25th November 2017. This data will be updated every 24 hours.