Skip to main content
×
×
Home

Kinetics of length-scale dependent plastic deformation of gold microspheres

  • AZM Ariful Islam (a1) and Robert J. Klassen (a1)
Abstract
Abstract

The size and strain-rate dependence of plastic deformation in Au microspheres of diameter ranging from 0.8 to 6.0 µm was investigated at room-temperature using flat-punch micro-compression testing. The contact yield stress was observed to increase with decreasing microsphere diameter. The apparent activation volume, V*, associated with the rate dependent plastic deformation remained essentially constant between 4 and 6b 3 for 0.8 and 1.0 µm spheres over strains up to 20% whereas it increased from 12 to 42b 3 for the larger 3.0 and 6.0 µm diameter specimens. The initiation of plastic deformation within the microspheres was also found to be highly dependent upon sphere diameter and strain rate with associated V*, and apparent activation energy, Q*, values of 0.4b 3 and 0.02 eV for 0.8 µm diameter spheres increasing to 4.1b 3 and 0.16 eV for 6.0 µm diameter spheres. These values indicate that initial plasticity is controlled by heterogeneous nucleation events that are consistent with a surface self-diffusion mechanism.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: aislam32@uwo.ca
Footnotes
Hide All

Contributing Editor: Mathias Göken

Footnotes
References
Hide All
1. Greer J.R., Oliver W.C., and Nix W.D.: Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53, 1821 (2005).
2. Nix W.D., Greer J.R., Feng G., and Lilleodden E.T.: Deformation at the nanometer and micrometer length scales: Effects of strain gradients and dislocation starvation. Thin Solid Films 515, 3152 (2007).
3. Kim J-Y. and Greer J.R.: Tensile and compressive behavior of gold and molybdenum single crystals at the nano-scale. Acta Mater. 57, 5245 (2009).
4. Frick C.P., Clark B.G., Orso S., Schneider A.S., and Arzt E.: Size effect on strength and strain hardening of small-scale [111] nickel compression pillars. Mater. Sci. Eng., A 489, 319 (2008).
5. Uchic M.D., Dimiduk D.M., Florando J.N., and Nix W.D.: Sample dimensions influence strength and crystal plasticity. Science 305, 986 (2004).
6. Purkayastha R. and McMeeking R.: A parameter study of intercalation of lithium into storage particles in a lithium-ion battery. Comput. Mater. Sci. 80, 2 (2013).
7. Greer J. and Nix W.: Nanoscale gold pillars strengthened through dislocation starvation. Phys. Rev. B 73, 245410 (2006).
8. Greer J.R., Weinberger C.R., and Cai W.: Comparing the strength of f.c.c. and b.c.c. sub-micrometer pillars: Compression experiments and dislocation dynamics simulations. Mater. Sci. Eng., A 493, 21 (2008).
9. Mook W.M., Niederberger C., Bechelany M., Philippe L., and Michler J.: Compression of freestanding gold nanostructures: From stochastic yield to predictable flow. Nanotechnology 21, 55701 (2010).
10. Schneider A.S., Clark B.G., Frick C.P., and Arzt E.: Correlation between activation volume and pillar diameter for Mo and Nb BCC Pillars. MRS Proc. 1185, 1185 (2009).
11. Shenoy V.B., Phillips R., and Tadmor E.B.: Nucleation of dislocations beneath a plane strain indenter. J. Mech. Phys. Solids 48, 649 (2000).
12. Liu Y., Van der Giessen E., and Needleman A.: An analysis of dislocation nucleation near a free surface. Int. J. Solids Struct. 44, 1719 (2007).
13. Schuh C.A., Mason J.K., and Lund A.C.: Quantitative insight into dislocation nucleation from high-temperature nanoindentation experiments. Nat. Mater. 4, 617 (2005).
14. Paul W., Oliver D., Miyahara Y., and Grütter P.H.: Minimum threshold for incipient plasticity in the atomic-scale nanoindentation of Au(111). Phys. Rev. Lett. 110, 1 (2013).
15. Mordehai D., Lee S-W., Backes B., Srolovitz D.J., Nix W.D., and Rabkin E.: Size effect in compression of single-crystal gold microparticles. Acta Mater. 59, 5202 (2011).
16. Mordehai D., Kazakevich M., Srolovitz D.J., and Rabkin E.: Nanoindentation size effect in single-crystal nanoparticles and thin films: A comparative experimental and simulation study. Acta Mater. 59, 2309 (2011).
17. Lee S-W., Mordehai D., Rabkin E., and Nix W.D.: Effects of focused-ion-beam irradiation and prestraining on the mechanical properties of FCC Au microparticles on a sapphire substrate. J. Mater. Res. 26, 1653 (2011).
18. Wang Z-J., Shan Z-W., Li J., Sun J., and Ma E.: Pristine-to-pristine regime of plastic deformation in submicron-sized single crystal gold particles. Acta Mater. 60, 1368 (2012).
19. Mook W.M., Lund M.S., Leighton C., and Gerberich W.W.: Flow stresses and activation volumes for highly deformed nanoposts. Mater. Sci. Eng., A 493, 12 (2008).
20. Gall K., Diao J., and Dunn M. L.: The strength of gold nanowires. Nano Lett. 4, 2431 (2004).
21. Weinberger C.R., Jennings A.T., Kang K., and Greer J.R.: Atomistic simulations and continuum modeling of dislocation nucleation and strength in gold nanowires. J. Mech. Phys. Solids 60, 84 (2012).
22. Deng C. and Sansoz F.: Effects of twin and surface facet on strain-rate sensitivity of gold nanowires at different temperatures. Phys. Rev. B: Condens. Matter Mater. Phys. 81, 1 (2010).
23. Kelly A. and Nicholson R.B.: Strengthening Methods in Crystals (Halstead Press Division, Wiley, New York, 1972).
24. Dao M., Lu L., Shen Y.F., and Suresh S.: Strength, strain-rate sensitivity and ductility of copper with nanoscale twins. Acta Mater. 54, 5421 (2006).
25. Wang Y.M., Hamza A.V., and Ma E.: Activation volume and density of mobile dislocations in plastically deforming nanocrystalline Ni. Appl. Phys. Lett. 86, 241917 (2005).
26. Jennings A.T., Li J., and Greer J.R.: Emergence of strain-rate sensitivity in Cu nanopillars: Transition from dislocation multiplication to dislocation nucleation. Acta Mater. 59, 5627 (2011).
27. Zhu T., Li J., Samanta A., Leach A., and Gall K.: Temperature and strain-rate dependence of surface dislocation nucleation. Phys. Rev. Lett. 100, 25502 (2008).
28. Wang Y., Hamza A., and Ma E.: Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni. Acta Mater. 54, 2715 (2006).
29. Somekawa H. and Schuh C.A.: Effect of solid solution elements on nanoindentation hardness, rate dependence, and incipient plasticity in fine grained magnesium alloys. Acta Mater. 59, 7554 (2011).
30. Zhu T., Li J., Ogata S., and Yip S.: Mechanics of ultra-strength materials. MRS Bull. 34, 167 (2009).
31. Rodriguez P.: Grain size dependence of the activation parameters for plastic deformation: Influence of crystal structure, slip system, and rate-controlling dislocation mechanism. Metall. Mater. Trans. A 35, 2697 (2004).
32. Nix W.D. and Lee S.: Micro-pillar plasticity controlled by dislocation nucleation at surfaces. Philos. Mag. 91, 1084 (2011).
33. Bhakhri V. and Klassen R.J.: The strain-rate dependence of the nanoindentation stress of gold at 300 K: A deformation kinetics-based approach. J. Mater. Res. 24, 1456 (2009).
34. Kocks U.F., Argon A.S., and Ashby M.F.: Thermodynamics and kinetics of slip. Prog. Mater. Sci. 19, 1 (1975).
35. Kogut L. and Etsion I.: Elastic–plastic contact analysis of a sphere and a rigid flat. J. Appl. Mech. 69, 657 (2002).
36. Maharaj D. and Bhushan B.: Nanomanipulation, nanotribology and nanomechanics of Au nanorods in dry and liquid environments using an AFM and depth sensing nanoindenter. Nanoscale 6, 5838 (2014).
37. Heyer J-K., Brinckmann S., Pfetzing-Micklich J., and Eggeler G.: Microshear deformation of gold single crystals. Acta Mater. 62, 225 (2014).
38. Kamimura Y., Edagawa K., and Takeuchi S.: Experimental evaluation of the Peierls stresses in a variety of crystals and their relation to the crystal structure. Acta Mater. 61, 294 (2013).
39. Hull D. and Bacon D.: Introduction to Dislocations, 4th ed. (Butterworth-Heinemann, Jordan Hill, Oxford, 2001).
40. Brenner S.S.: Tensile strength of whiskers. J. Appl. Phys. 27, 1484 (1956).
41. Bei H., Shim S., Pharr G.M., and George E.P.: Effects of pre-strain on the compressive stress–strain response of Mo-alloy single-crystal micropillars. Acta Mater. 56, 4762 (2008).
42. Salehinia I., Perez V., and Bahr D.F.: Effect of vacancies on incipient plasticity during contact loading. Philos. Mag. 92, 550 (2012).
43. Orowan E.: Problems of plastic gliding. Proc. Phys. Soc. 52, 8 (1940).
44. Bhakhri V., Wang J., Ur-rehman N., Ciurea C., Giuliani F., and Vandeperre L.J.: Instrumented nanoindentation investigation into the mechanical behavior of ceramics at moderately elevated temperatures. J. Mater. Res. 27, 65 (2011).
45. Baufeld B., Messerschmidt U., Bartsch M., and Baither D.: Plasticity of cubic zirconia between 700 °C and 1150 °C observed by macroscopic compression and by in situ tensile straining tests. Key Eng. Mater. 97–98, 431 (1994).
46. Pirouz P., Demenet J.L., and Hong M.H.: On transition temperatures in the plasticity and fracture of semiconductors. Philos. Mag. A 81, 1207 (2001).
47. Wo P.C., Zuo L., and Ngan A.H.W.: Time-dependent incipient plasticity in Ni3Al as observed in nanoindentation. J. Mater. Res. 20, 489 (2005).
48. Smith J.F. and Zheng S.: High temperature nanoscale mechanical property measurements. Surf. Eng. 16, 143 (2000).
49. Vieregge J.: Nanoscale Creep Testing of Copper & Gold, Hysitron Inc application note, Minneapolis, MN.
50. Liu C.L., Cohen J.M., Adams J.B., and Voter A.F.: EAM study of surface self-diffusion. Surf. Sci. 253, 334 (1991).
51. Chen L.Y., He M., Shin J., Richter G., and Gianola D.S.: Measuring surface dislocation nucleation in defect-scarce nanostructures. Nat. Mater. 14, 707 (2015).
52. Li J.: Dislocation nucleation: Diffusive origins. Nat. Mater. 14, 656 (2015).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 6
Total number of PDF views: 50 *
Loading metrics...

Abstract views

Total abstract views: 196 *
Loading metrics...

* Views captured on Cambridge Core between 22nd June 2017 - 21st February 2018. This data will be updated every 24 hours.