Skip to main content
×
Home
    • Aa
    • Aa

Kinetics of length-scale dependent plastic deformation of gold microspheres

  • AZM Ariful Islam (a1) and Robert J. Klassen (a1)
Abstract
Abstract

The size and strain-rate dependence of plastic deformation in Au microspheres of diameter ranging from 0.8 to 6.0 µm was investigated at room-temperature using flat-punch micro-compression testing. The contact yield stress was observed to increase with decreasing microsphere diameter. The apparent activation volume, V*, associated with the rate dependent plastic deformation remained essentially constant between 4 and 6b 3 for 0.8 and 1.0 µm spheres over strains up to 20% whereas it increased from 12 to 42b 3 for the larger 3.0 and 6.0 µm diameter specimens. The initiation of plastic deformation within the microspheres was also found to be highly dependent upon sphere diameter and strain rate with associated V*, and apparent activation energy, Q*, values of 0.4b 3 and 0.02 eV for 0.8 µm diameter spheres increasing to 4.1b 3 and 0.16 eV for 6.0 µm diameter spheres. These values indicate that initial plasticity is controlled by heterogeneous nucleation events that are consistent with a surface self-diffusion mechanism.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: aislam32@uwo.ca
Footnotes
Hide All

Contributing Editor: Mathias Göken

Footnotes
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

J.R. Greer , W.C. Oliver , and W.D. Nix : Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients. Acta Mater. 53, 1821 (2005).

W.D. Nix , J.R. Greer , G. Feng , and E.T. Lilleodden : Deformation at the nanometer and micrometer length scales: Effects of strain gradients and dislocation starvation. Thin Solid Films 515, 3152 (2007).

J-Y. Kim and J.R. Greer : Tensile and compressive behavior of gold and molybdenum single crystals at the nano-scale. Acta Mater. 57, 5245 (2009).

C.P. Frick , B.G. Clark , S. Orso , A.S. Schneider , and E. Arzt : Size effect on strength and strain hardening of small-scale [111] nickel compression pillars. Mater. Sci. Eng., A 489, 319 (2008).

M.D. Uchic , D.M. Dimiduk , J.N. Florando , and W.D. Nix : Sample dimensions influence strength and crystal plasticity. Science 305, 986 (2004).

R. Purkayastha and R. McMeeking : A parameter study of intercalation of lithium into storage particles in a lithium-ion battery. Comput. Mater. Sci. 80, 2 (2013).

J. Greer and W. Nix : Nanoscale gold pillars strengthened through dislocation starvation. Phys. Rev. B 73, 245410 (2006).

J.R. Greer , C.R. Weinberger , and W. Cai : Comparing the strength of f.c.c. and b.c.c. sub-micrometer pillars: Compression experiments and dislocation dynamics simulations. Mater. Sci. Eng., A 493, 21 (2008).

W.M. Mook , C. Niederberger , M. Bechelany , L. Philippe , and J. Michler : Compression of freestanding gold nanostructures: From stochastic yield to predictable flow. Nanotechnology 21, 55701 (2010).

A.S. Schneider , B.G. Clark , C.P. Frick , and E. Arzt : Correlation between activation volume and pillar diameter for Mo and Nb BCC Pillars. MRS Proc. 1185, 1185 (2009).

V.B. Shenoy , R. Phillips , and E.B. Tadmor : Nucleation of dislocations beneath a plane strain indenter. J. Mech. Phys. Solids 48, 649 (2000).

Y. Liu , E. Van der Giessen , and A. Needleman : An analysis of dislocation nucleation near a free surface. Int. J. Solids Struct. 44, 1719 (2007).

W. Paul , D. Oliver , Y. Miyahara , and P.H. Grütter : Minimum threshold for incipient plasticity in the atomic-scale nanoindentation of Au(111). Phys. Rev. Lett. 110, 1 (2013).

D. Mordehai , S-W. Lee , B. Backes , D.J. Srolovitz , W.D. Nix , and E. Rabkin : Size effect in compression of single-crystal gold microparticles. Acta Mater. 59, 5202 (2011).

D. Mordehai , M. Kazakevich , D.J. Srolovitz , and E. Rabkin : Nanoindentation size effect in single-crystal nanoparticles and thin films: A comparative experimental and simulation study. Acta Mater. 59, 2309 (2011).

S-W. Lee , D. Mordehai , E. Rabkin , and W.D. Nix : Effects of focused-ion-beam irradiation and prestraining on the mechanical properties of FCC Au microparticles on a sapphire substrate. J. Mater. Res. 26, 1653 (2011).

Z-J. Wang , Z-W. Shan , J. Li , J. Sun , and E. Ma : Pristine-to-pristine regime of plastic deformation in submicron-sized single crystal gold particles. Acta Mater. 60, 1368 (2012).

W.M. Mook , M.S. Lund , C. Leighton , and W.W. Gerberich : Flow stresses and activation volumes for highly deformed nanoposts. Mater. Sci. Eng., A 493, 12 (2008).

K. Gall , J. Diao , and M. L. Dunn : The strength of gold nanowires. Nano Lett. 4, 2431 (2004).

C. Deng and F. Sansoz : Effects of twin and surface facet on strain-rate sensitivity of gold nanowires at different temperatures. Phys. Rev. B: Condens. Matter Mater. Phys. 81, 1 (2010).

Y.M. Wang , A.V. Hamza , and E. Ma : Activation volume and density of mobile dislocations in plastically deforming nanocrystalline Ni. Appl. Phys. Lett. 86, 241917 (2005).

A.T. Jennings , J. Li , and J.R. Greer : Emergence of strain-rate sensitivity in Cu nanopillars: Transition from dislocation multiplication to dislocation nucleation. Acta Mater. 59, 5627 (2011).

T. Zhu , J. Li , A. Samanta , A. Leach , and K. Gall : Temperature and strain-rate dependence of surface dislocation nucleation. Phys. Rev. Lett. 100, 25502 (2008).

Y. Wang , A. Hamza , and E. Ma : Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni. Acta Mater. 54, 2715 (2006).

H. Somekawa and C.A. Schuh : Effect of solid solution elements on nanoindentation hardness, rate dependence, and incipient plasticity in fine grained magnesium alloys. Acta Mater. 59, 7554 (2011).

T. Zhu , J. Li , S. Ogata , and S. Yip : Mechanics of ultra-strength materials. MRS Bull. 34, 167 (2009).

P. Rodriguez : Grain size dependence of the activation parameters for plastic deformation: Influence of crystal structure, slip system, and rate-controlling dislocation mechanism. Metall. Mater. Trans. A 35, 2697 (2004).

W.D. Nix and S. Lee : Micro-pillar plasticity controlled by dislocation nucleation at surfaces. Philos. Mag. 91, 1084 (2011).

V. Bhakhri and R.J. Klassen : The strain-rate dependence of the nanoindentation stress of gold at 300 K: A deformation kinetics-based approach. J. Mater. Res. 24, 1456 (2009).

L. Kogut and I. Etsion : Elastic–plastic contact analysis of a sphere and a rigid flat. J. Appl. Mech. 69, 657 (2002).

D. Maharaj and B. Bhushan : Nanomanipulation, nanotribology and nanomechanics of Au nanorods in dry and liquid environments using an AFM and depth sensing nanoindenter. Nanoscale 6, 5838 (2014).

J-K. Heyer , S. Brinckmann , J. Pfetzing-Micklich , and G. Eggeler : Microshear deformation of gold single crystals. Acta Mater. 62, 225 (2014).

Y. Kamimura , K. Edagawa , and S. Takeuchi : Experimental evaluation of the Peierls stresses in a variety of crystals and their relation to the crystal structure. Acta Mater. 61, 294 (2013).

D. Hull and D. Bacon : Introduction to Dislocations, 4th ed. (Butterworth-Heinemann, Jordan Hill, Oxford, 2001).

H. Bei , S. Shim , G.M. Pharr , and E.P. George : Effects of pre-strain on the compressive stress–strain response of Mo-alloy single-crystal micropillars. Acta Mater. 56, 4762 (2008).

I. Salehinia , V. Perez , and D.F. Bahr : Effect of vacancies on incipient plasticity during contact loading. Philos. Mag. 92, 550 (2012).

E. Orowan : Problems of plastic gliding. Proc. Phys. Soc. 52, 8 (1940).

V. Bhakhri , J. Wang , N. Ur-rehman , C. Ciurea , F. Giuliani , and L.J. Vandeperre : Instrumented nanoindentation investigation into the mechanical behavior of ceramics at moderately elevated temperatures. J. Mater. Res. 27, 65 (2011).

P. Pirouz , J.L. Demenet , and M.H. Hong : On transition temperatures in the plasticity and fracture of semiconductors. Philos. Mag. A 81, 1207 (2001).

P.C. Wo , L. Zuo , and A.H.W. Ngan : Time-dependent incipient plasticity in Ni3Al as observed in nanoindentation. J. Mater. Res. 20, 489 (2005).

J.F. Smith and S. Zheng : High temperature nanoscale mechanical property measurements. Surf. Eng. 16, 143 (2000).

C.L. Liu , J.M. Cohen , J.B. Adams , and A.F. Voter : EAM study of surface self-diffusion. Surf. Sci. 253, 334 (1991).

L.Y. Chen , M. He , J. Shin , G. Richter , and D.S. Gianola : Measuring surface dislocation nucleation in defect-scarce nanostructures. Nat. Mater. 14, 707 (2015).

J. Li : Dislocation nucleation: Diffusive origins. Nat. Mater. 14, 656 (2015).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 4
Total number of PDF views: 24 *
Loading metrics...

Abstract views

Total abstract views: 61 *
Loading metrics...

* Views captured on Cambridge Core between 22nd June 2017 - 24th July 2017. This data will be updated every 24 hours.