Skip to main content
×
×
Home

Martensite transformation in the modified high Cr ferritic heat-resistant steel during continuous cooling

  • Qiuzhi Gao (a1), Yongchang Liu (a1), Xinjie Di (a1), Liming Yu (a1) and Zesheng Yan (a1)...
Abstract
Abstract

The thermal dilation experiment and the martensite transformation features of modified high Cr ferritic heat-resistant steel upon continuous cooling were explored at various cooling rates. The “spread” martensite transformation model was introduced to investigate the influence of the cooling rate applied on the martensite transformation behaviors. The martensite fraction, martensite formation rate, and the density of martensite laths were obtained as a function of cooling rate. Both the onset and offset temperatures of the martensite transformation decrease with the increase of cooling rate, and the martensite formation rate bursts at the beginning of transformation and then reaches a peak rapidly. The fitted data based on the proposed kinetic model indicated that the aspect ratio of martensite lath decreases, instead the density of martensite laths increases, with the increase of cooling rate.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: licmtju@163.com
References
Hide All
1.Vaillant J., Vandenberghe B., Hahn B., Heuser H., and Jochum C.: T/P23, 24, 911 and 92: New grades for advanced coal-fired power plants–properties and experience. Int. J. Press. Vessels Pip. 85(1–2), 38 (2008).
2.Mythili R., Thomas Paul V., Saroja S., Vijayalakshmi M., and Raghunathan V.: Microstructural modification due to reheating in multipass manual metal arc welds of 9Cr-1Mo steel. J. Nucl. Mater. 312(2–3), 199 (2003).
3.Klueh R.L. and Nelson A.T.: Ferritic/martensitic steels for next-generation reactors. J. Nucl. Mater. 371(1–3), 37 (2007).
4.Bhadeshia H., Strang A., and Gooch D.J.: Ferritic power plant steels: Remanent life assessment and approach to equilibrium. Int. Mater. Rev. 43(2), 45 (1998).
5.Jones W., Hills C., and Polonis D.: Microstructural evolution of modified 9Cr-1Mo steel Metall. Mater. Trans. A 22(5), 1049 (1991).
6.Ning B., Shi Q., Yan Z., Fu J., Liu Y., and Bie L.: Variation of martensite phase transformation mechanism in minor-stressed T91 ferritic steel. J. Nucl. Mater. 393(1), 54 (2009).
7.Klotz U.E., Solenthaler C., and Uggowitzer P.J.: Martensitic-austenitic 9-12% Cr steels–alloy design, microstructural stability and mechanical properties. Mater. Sci. Eng., A 476(1–2), 186 (2008).
8.Koistinen D. and Marburger R.: A general equation prescribing extent of austenite-martensite transformation in pure Fe-C alloys and plain carbon steels. Acta Metall. 7, 59 (1959).
9.van Bohemen S. and Sietsma J.: Effect of composition on kinetics of athermal martensite formation in plain carbon steels. Mater. Sci. Technol. 25(8), 1009 (2009).
10.Guimaraes J.: Athermal martensite: Genesis of microstructure and transformation curves. Mater. Sci. Eng., A 476(1–2), 106 (2008).
11.Raghavan V.: Formation sequence of plates in isothermal martensite transformation. Acta Metall. 17(10), 1299 (1969).
12.Guimaraes J.: Isothermal martensite: Austenite grain size and kinetics of ‘spread’. Mater. Sci. Technol. 24(7), 843 (2008).
13.Fisher J.C., Hollomon J.H., and Turnbull D.: Kinetics of the austenite-martensite transformation. Trans. AIME. 185, 691 (1949).
14.Liu Y.C., Sommer F., and Mittemeijer E.J.: Abnormal austenite-ferrite transformation behaviour in substitutional Fe-based alloys. Acta Mater. 51(2), 507 (2003).
15.Machlin E. and Cohen M.: Burst phenomenon in the martensitic transformation. Trans. AIME. 191(9), 746 (1951).
16.Chatterjee S. and Bhadeshia H.K.D.H.: Transformation induced plasticity assisted steels: stress or strain affected martensitic transformation? Mater. Sci. Technol. 23, 1101 (2007).
17.Speer J., Matlock D.K., De Cooman B.C., and Schroth J.G.: Carbon partitioning into austenite after martensite transformation. Acta Mater. 51(9), 2611 (2003).
18.Kang S.H. and Im Y.T.: Three-dimensional finite-element analysis of the quenching process of plain-carbon steel with phase transformation. Metall. Mater. Trans. A 36(9), 2315 (2005).
19.Guimaraes J.R.C. and Rios P.R.: Unified model for plate and lath martensite with athermal kinetics. Metall. Mater. Trans. A 41(8), 1928 (2010).
20.Zhao J.C. and Notis M.R.: Continuous cooling transformation kinetics versus isothermal transformation kinetics of steels: A phenomenological rationalization of experimental observations. Mater. Sci. Eng., R 15(4–5), 135 (1995).
21.Guimaraes J.R.C. and Rios P.R.: Initial nucleation kinetics of martensite transformation. J. Mater. Sci. 43(15), 5206 (2008).
22.Guimaraes J. and Rios P.: Martensite start temperature and the austenite grain-size. J. Mater. Sci. 45(4), 1074 (2010).
23.Guimaraes J.R.C. and Rios P.R.: Unified description of martensite microstructure and kinetics. J. Mater. Sci. 44(4), 998 (2009).
24.Entwisle A.: The kinetics of martensite formation in steel. Metall. Mater. Trans. B 2(9), 2395 (1971).
25.Gil F., Manero J., and Planell J.: Effect of grain size on the martensitic transformation in NiTi alloy. J. Mater. Sci. 30(10), 2526 (1995).
26.Rios P. and Guimaraes J.: Microstructural path analysis of athermal martensite. Scr. Mater. 57(12), 1105 (2007).
27.Cech R.E.: Evidence for solidification of a metastable phase in Fe-Ni alloys. Trans. AIME. 206, 585 (1956).
28.Kaufman L. and Cohen M.: Thermodynamics and kinetics of martensitic transformations. Prog. Met. Phys. 7, 165 (1958).
29.Guimaraes J.R.C. and Rios P.R.: Quantitative interpretation of martensite microstructure. Mater. Res. 14(1), 97 (2011).
30.Gao Q., Liu Y., Di X., Dong Z., and Yan Z.: The isochronal δ→ γ transformation of high Cr ferritic heat-resistant steel during cooling. J. Mater. Sci. 46(21), 6910 (2011).
31.Qiao Z.X., Liu Y.C., Yu L.M., and Gao Z.M.: Effect of cooling rate on microstructural formation and hardness of 30CrNi3Mo steel. Appl. Phys. A 95(3), 917 (2009).
32.Jeya Ganesh B., Raju S., Kumar Rai A., Mohandas E., Vijayalakshmi M., Rao K., and Raj B.: Differential scanning calorimetry study of diffusional and martensitic phase transformations in some 9 wt% Cr low carbon ferritic steels. Mater. Sci. Technol. 27(2), 500 (2011).
33.Helis L., Toda Y., Hara T., Miyazaki H., and Abe F.: Effect of cobalt on the microstructure of tempered martensitic 9Cr steel for ultra-supercritical power plants. Mater. Sci. Eng., A 510, 88 (2009).
34.Lee K., Cho H., and Choi D.: Effect of isothermal treatment of SAF 2205 duplex stainless steel on migration of δ/γ interface boundary and growth of austenite. J. Alloys Compd. 285(1–2), 156 (1999).
35.Maehara Y. and Ohmori Y.: Microstructural change during superplastic deformation of δ-ferrite/austenite duplex stainless steel. Metall. Mater. Trans. A 18(5), 663 (1987).
36.Ma F., Wen G., Tang P., Xu G., Mei F., and Wang W.: Effect of cooling rate on the precipitation behavior of carbonitride in microalloyed steel slab. Metall. Mater. Trans. B 42(1), 81 (2010).
37.Rios P. and Guimaraes J.: Microstructural path analysis of martensite burst. Mater. Res. 13(1), 119 (2010).
38.Hattestrand M. and Andrén H.O.: Boron distribution in 9-12% chromium steels. Mater. Sci. Eng., A 270(1), 33 (1999).
39.Lundin L., Fallman S., and Andren H.O.: Microstructure and mechanical properties of a 10% chromium steel with improved creep resistance at 600 °C. Mater. Sci. Technol. 13(3), 233 (1997).
40.Semba H., Igarashi M., Yamadera Y., Iseda A., and Sawaragi Y.: Report of the 123rd committee on heat-resisting materials and alloys. JSPS. 44, 119 (2003).
41.Hald J. and Straub S.: Materials for advanced power engineering. In Proceedings of the 6th Liege Conference; Part I, ed. F.J. GmBH (5, Julich, 1998), p. 155.
42.Yamada K., Igarashi M., Muneki S., and Abe F.: Effect of Co addition on microstructure in high Cr ferritic steels ISIJ Int. 43(9), 1438 (2003).
43.Magee C.L.: The nucleation of Martensite, in Phase transformation, ed. H.I. Aaronson. (ASM, Metals Park, OH, 1968), p. 115.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 3
Total number of PDF views: 21 *
Loading metrics...

Abstract views

Total abstract views: 121 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th January 2018. This data will be updated every 24 hours.