Skip to main content Accesibility Help
×
×
Home

Microstructure and electrochemical properties of nanoporous gold produced by dealloying Au-based thin film nanoglass

  • Pierre Denis (a1), Hans-Jörg Fecht (a1), Yanpeng Xue (a2), Eirini Maria Paschalidou (a2), Paola Rizzi (a2) and Livio Battezzati (a2)...
Abstract

In this study, Au-based nanoglasses in the form of thin films deposited by magnetron sputtering are comparatively dealloyed. The films have either nanograined or nanocolumnar microstructure, depending on the working pressure of Ar in the sputtering chamber. Nanocolumnar thin films exhibit much higher dealloying rate reducing effectively the dealloying time with respect to nanograined and homogenous thin films. Electrocatalysis experiments indicate that the resulting nanoporous films are active for the methanol electrooxidation, with promising results in term of stability especially for the dealloyed nanocolumnar film.

Copyright
Corresponding author
a)Address all correspondence to these authors. e-mail: pierre.denis@uni-ulm.de
b)e-mail: yxue@unito.it
References
Hide All
1.Ding, Y., Kim, Y.J., and Erlebacher, J.: Nanoporous gold leaf: “Ancient technology ”/advanced material. Adv. Mater. 16, 1897 (2004).
2.Morrish, R., Dorame, K., and Muscat, A.J.: Formation of nanoporous Au by dealloying AuCu thin films in HNO3. Scr. Mater. 64, 856 (2011).
3.Erlebacher, J., Aziz, M.J., Karma, A., Dimitrov, N., and Sieradzki, K.: Evolution of nanoporosity in dealloying. Nature 410, 450 (2001).
4.McCue, I., Benn, E., Gaskey, B., and Erlebacher, J.: Dealloying and dealloyed materials. Annu. Rev. Mater. Res. 46, 263 (2016).
5.Scaglione, F., Celegato, F., Rizzi, P., and Battezzati, L.: A comparison of de-alloying crystalline and amorphous multicomponent Au alloys. Intermetallics 66, 82 (2015).
6.Paschalidou, E.M., Celegato, F., Scaglione, F., Rizzi, P., Battezzati, L., Gebert, A., Oswald, S., Wolff, U., Mihaylov, L., and Spassov, T.: The mechanism of generating nanoporous Au by de-alloying amorphous alloys. Acta Mater. 119, 177 (2016).
7.Xue, Y., Scaglione, F., Rizzi, P., and Battezzati, L.: Improving the chemical de-alloying of amorphous Au alloys. Corros. Sci. 127, 141 (2017).
8.Qiu, H-J., Wang, J.Q., Liu, P., Wang, Y., and Chen, M.W.: Hierarchical nanoporous metal/metal-oxide composite by dealloying metallic glass for high-performance energy storage. Corros. Sci. 96, 196 (2015).
9.Erlebacher, J.: Mechanism of coarsening and bubble formation in high-genus nanoporous metals. Phys. Rev. Lett. 106, 1 (2011).
10.Gupta, G., Thorp, J.C., Mara, N.A., Dattelbaum, A.M., Misra, A., and Picraux, S.T.: Morphology and porosity of nanoporous Au thin films formed by dealloying of AuxSi1−x. J. Appl. Phys. 112, 1 (2012).
11.Dixon, M.C., Daniel, T.A., Hieda, M., Smilgies, D.M., Chan, M.H.W., and Allara, D.L.: Preparation, structure, and optical properties of nanoporous gold thin films. Langmuir 23, 2414 (2007).
12.Li, X., Qiu, H-J., Wang, J.Q., and Wang, Y.: Corrosion of ternary Mn–Cu–Au to nanoporous Au–Cu with widely tuned Au/Cu ratio for electrocatalyst. Corros. Sci. 106, 55 (2016).
13.Ding, S., Liu, Y., Li, Y., Liu, Z., Sohn, S., Walker, F.J., and Schroers, J.: Combinatorial development of bulk metallic glasses. Nat. Mater. 13, 1 (2014).
14.Gleiter, H.: The way from today’s materials to new kinds of amorphous solids: Nano-glasses. Proc. Indian Natl. Sci. Acad. 80, 55 (2014).
15.Gleiter, H.: Nanoglasses: A new kind of noncrystalline material and the way to an age of new technologies? Small 12, 2225 (2016).
16.Fang, J.X., Vainio, U., Puff, W., Würschum, R., Wang, X.L., Wang, D., Ghafari, M., Jiang, F., Sun, J., Hahn, H., and Gleiter, H.: Atomic structure and structural stability of Sc75Fe25 nanoglasses. Nano Lett. 12, 458 (2012).
17.Wang, J.Q., Chen, N., Liu, P., Wang, Z., Louzguine-Luzgin, D.V., Chen, M.W., and Perepezko, J.H.: The ultrastable kinetic behavior of an Au-based nanoglass. Acta Mater. 79, 30 (2014).
18.Witte, R., Feng, T., Fang, J.X., Fischer, A., Ghafari, M., Kruk, R., Brand, R.A., Wang, D., Hahn, H., and Gleiter, H.: Evidence for enhanced ferromagnetism in an iron-based nanoglass. Appl. Phys. Lett. 103, 73106 (2013).
19.Wang, X.L., Jiang, F., Hahn, H., Li, J., Gleiter, H., Sun, J., and Fang, J.X.: Plasticity of a scandium-based nanoglass. Scr. Mater. 98, 40 (2015).
20.Chen, N., Frank, R., Asao, N., Louzguine-Luzgin, D.V., Sharma, P., Wang, J.Q., Xie, G.Q., Ishikawa, Y., Hatakeyama, N., Lin, Y.C., Esashi, M., Yamamoto, Y., and Inoue, A.: Formation and properties of Au-based nanograined metallic glasses. Acta Mater. 59, 6433 (2011).
21.Guo, H., Zhang, W., Qin, C., Qiang, J., Chen, M., and Inoue, A.: Glass-forming ability and properties of new Au-based glassy alloys with low Au concentrations. Mater. Trans. 50, 1290 (2009).
22.Xiao, S., Xiao, F., Hu, Y., Yuan, S., Wang, S., Qian, L., and Liu, Y.: Hierarchical nanoporous gold–platinum with heterogeneous interfaces for methanol electrooxidation. Sci. Rep. 4, 4370 (2015).
23.Suh, J-Y., Dale Conner, R., Paul Kim, C., Demetriou, M.D., and Johnson, W.L.: Correlation between fracture surface morphology and toughness in Zr-based bulk metallic glasses. J. Mater. Res. 25, 982 (2010).
24.Sniadecki, Z., Wang, D., Ivanisenko, Y., Chakravadhanula, V.S.K., Kübel, C., Hahn, H., and Gleiter, H.: Nanoscale morphology of Ni50Ti45Cu5 nanoglass. Mater. Charact. 113, 26 (2016).
25.Thornton, J.A.: High rate thick film growth. Annu. Rev. Mater. Sci. 7, 239 (1977).
26.Thornton, J.A.: Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. J. Vac. Sci. Technol. 11, 666 (1974).
27.Chan, K-Y. and Teo, B-S.: Atomic force microscopy (AFM) and X-ray diffraction (XRD) investigations of copper thin films prepared by dc magnetron sputtering technique. Microelectron. J. 37, 1064 (2006).
28.Kaciulis, S., Mezzi, A., Fiore, G., Ichim, I., Battezzati, L., and Rizzi, P.: XPS study of gold-based metallic glass. Surf. Interface Anal. 42, 597 (2010).
29.Eisenbart, M., Klotz, U.E., Busch, R., and Gallino, I.: A colourimetric and microstructural study of the tarnishing of gold-based bulk metallic glasses. Corros. Sci. 85, 258 (2014).
30.Lang, X., Guo, H., Chen, L., and Kudo, A.: Novel nanoporous Au–Pd alloy with high catalytic activity and excellent electrochemical stability. J. Phys. Chem. C 114, 2600 (2010).
31.Scaglione, F., Rizzi, P., Celegato, F., and Battezzati, L.: Synthesis of nanoporous gold by free corrosion of an amorphous precursor. J. Alloys Compd. 615, S142 (2014).
32.Gebert, A., Buchholz, K., Leonhard, A., Mummert, K., Eckert, J., and Schultz, L.: Investigations on the electrochemical behaviour of Zr-based bulk metallic glasses. Mater. Sci. Eng., A 267, 294 (1999).
33.Mihaylov, L., Lyubenova, L., Gerdjikov, T., Nihtianova, D., and Spassov, T.: Selective dissolution of amorphous Zr–Cu–Ni–Al alloys. Corros. Sci. 94, 350 (2015).
34.Mihailov, L., Redzheb, M., and Spassov, T.: Selective dissolution of amorphous and nanocrystalline Zr2Ni. Corros. Sci. 74, 308 (2013).
35.Paschalidou, E.M., Scaglione, F., Gebert, A., Oswald, S., Rizzi, P., and Battezzati, L.: Partially and fully de-alloyed glassy ribbons based on Au: Application in methanol electro-oxidation studies. J. Alloys Compd. 667, 302 (2016).
36.Fujita, T., Guan, P., McKenna, K., Lang, X., Hirata, A., Zhang, L., Tokunaga, T., Arai, S., Yamamoto, Y., Tanaka, N., Ishikawa, Y., Asao, N., Yamamoto, Y., Erlebacher, J., and Chen, M.: Atomic origins of the high catalytic activity of nanoporous gold. Nat. Mater. 11, 775 (2012).
37.Zhang, J., Liu, P., Ma, H., and Ding, Y.: Nanostructured porous gold for methanol electro-oxidation. J. Phys. Chem. C 111, 10382 (2007).
38.Borkowska, Z., Tymosiak-Zielinska, A., and Shul, G.: Electrooxidation of methanol on polycrystalline and single crystal gold electrodes. Electrochim. Acta 49, 1209 (2004).
39.Heli, H., Jafarian, M., Mahjani, M.G., and Gobal, F.: Electro-oxidation of methanol on copper in alkaline solution. Electrochim. Acta 49, 4999 (2004).
40.Khouchaf, A., Takky, D., and El Mahi Chbihi, M.: Electrocatalytic oxidation of methanol on glassy carbon electrode modified by metal ions (copper and nickel) dispersed into polyaniline film. J. Mater. Sci. Chem. Eng. 4, 97 (2016).
41.Abd El Rehim, S.S., Hassan, H.H., Ibrahim, M.A.M., and Amin, M.A.: Electrochemical behaviour of a silver electrode in NaOH solutions. Monatsh. Chem. 129, 1103 (1998).
42.Wan, Y., Wang, X., Liu, S., Li, Y., Sun, H., and Wang, Q.: Effect of electrochemical factors on formation and reduction of silver oxides. Int. J. Electrochem. Sci. 8, 12837 (2013).
43.Jeong, M-C.: Voltammetric studies on the palladium oxides in alkaline media. J. Electrochem. Soc. 140, 1986 (1993).
44.Grden, M., Lukaszewski, M., Jerkiewicz, G., and Czerwinski, A.: Electrochemical behaviour of palladium electrode: Oxidation, electrodissolution and ionic adsorption. Electrochim. Acta 53, 7583 (2008).
45.Assiongbon, K.A. and Roy, D.: Electro-oxidation of methanol on gold in alkaline media: Adsorption characteristics of reaction intermediates studied using time resolved electro-chemical impedance and surface plasmon resonance techniques. Surf. Sci. 594, 99 (2005).
46.Graf, M., Haensch, M., Carstens, J., Wittstock, G., and Weissmüller, J.: Electrocatalytic methanol oxidation with nanoporous gold: Microstructure and selectivity. Nanoscale 9, 17839 (2017).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Denis et al. supplementary material
Denis et al. supplementary material 1

 Word (1.9 MB)
1.9 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed