Skip to main content
×
Home
    • Aa
    • Aa

Microstructure and mechanical properties of electrodeposited Al1−x Mn x /Al1−y Mn y nanostructured multilayers

  • Wenjun Cai (a1) and Christopher A. Schuh (a2)
Abstract
Abstract

Nanostructured Al1−x Mn x /Al1−y Mn y multilayers were deposited from room temperature ionic liquid using galvanostatic control at various current densities and electrolyte compositions. By tuning the deposition parameters, multilayers with both micrometer and nanometer layer thicknesses were synthesized, with modulation of the elastic modulus and hardness between Mn-lean and Mn-rich layers. Surface morphology, composition, and microstructure of the films were characterized using x-ray diffraction and electron microanalysis tools. Nanoindentation and nanoscratch tests were performed to evaluate the mechanical and tribological properties of selected multilayers. Finally, the effects of deposition parameters on the microstructure evolution and mechanical properties of the multilayers were discussed.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: caiw@usf.edu
References
Hide All
1. AydinerC.C., BrownD.W., MaraN.A., AlmerJ., and MisraA.: In situ x-ray investigation of freestanding nanoscale Cu-Nb multilayers under tensile load. Appl. Phys. Lett. 94(3), 031906 (2009).
2. BarnettS.A. and ShinnM.: Plastic and elastic properties of compositionally modulated thin-films. Annu. Rev. Mater. Sci. 24, 481511 (1994).
3. BhattacharyyaD., MaraN.A., DickersonP., HoaglandR.G., and MisraA.: Compressive flow behavior of Al-TiN multilayers at nanometer scale layer thickness. Acta Mater. 59(10), 38043816 (2011).
4. ChoiI.S., DetorA.J., SchwaigerR., DaoM., SchuhC.A., and SureshS.: Mechanics of indentation of plastically graded materials - II: Experiments on nanocrystalline alloys with grain size gradients. J. Mech. Phys. Solids 56(1), 172183 (2008).
5. MaraN.A., BhattacharyyaD., HirthJ.P., DickersonP., and MisraA.: Mechanism for shear banding in nanolayered composites. Appl. Phys. Lett. 97(2), 021909 (2010).
6. MisraA., HirthJ.P., and HoaglandR.G.: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53(18), 48174824 (2005).
7. RossC.A.: Electrodeposited multilayer thin-films. Annu. Rev. Mater. Sci. 24, 159188 (1994).
8. GoldmanL.M., RossC.A., OhashiW., WuD., and SpaepenF.: New Dual-Bath technique for electrodeposition of short repeat length multilayers. Appl. Phys. Lett. 55(21), 21822184 (1989).
9. StaffordG.R.: The electrodeposition of an aluminum-manganese metallic-glass from molten-salts. J. Electrochem. Soc. 136(3), 635639 (1989).
10. AliM.R., NishikataA., and TsuruT.: Electrodeposition of Al-Ni intermetallic compounds from aluminum chloride-N-(n-butyl)pyridinium chloride room temperature molten salt. J. Electroanal. Chem. 513(2), 111118 (2001).
11. SimkaW., PuszczykD., and NawratG.: Electrodeposition of metals from non-aqueous solutions. Electrochim. Acta 54(23), 53075319 (2009).
12. JiangT., BrymM.J.C., DubeG., LasiaA., and BrisardG.M.: Electrodeposition of aluminium from ionic liquids: Part I - Electrodeposition and surface morphology of aluminium from aluminium chloride (AlCl3)-l-ethyl-3-methylimidazolium chloride ([EMIm]Cl) ionic liquids. Surf. Coat. Technol. 201(1–2), 19 (2006).
13. StaffordG.R. and HusseyC.L.: Electrodeposition of transition metal-aluminum alloys from chloroaluminate molten salts. In Advances in Electrochemical Science and Engineering, Wiley-VCH Verlag GmbH: Weinheim, 2001; pp. 313328.
14. PliethW.: Electrochemical alloy deposition: New properties by formation of intermetallic compounds. Surf. Coat. Technol. 169, 9699 (2003).
15. EndresF.: Ionic liquids: Solvents for the electrodeposition of metals and semiconductors. Chemphyschem 3(2), 144154 (2002).
16. CaiW.J. and SchuhC.A.: Tuning nanoscale grain size distribution in multilayered Al-Mn alloys. Scr. Mater. 66(3–4), 194197 (2012).
17. OliverW.C. and PharrG.M.: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 15641583 (1992).
18. VerdieckR.G. and YntemaL.F.: The electrochemistry of baths of fused aluminum halides I. Aluminum as a reference electrode. J. Phys. Chem. 46(3), 344352 (1942).
19. TremilloB. and LetisseG.: Properties of molten sodium tetrachloroaluminate in solution. I. Acid-Base systems. J. Electroanal. Chem. 17(3–4), 371 (1968).
20. RuanS.Y. and SchuhC.A.: Electrodeposited Al-Mn alloys with microcrystalline, nanocrystalline, amorphous and nano-quasicrystalline structures. Acta Mater. 57(13), 38103822 (2009).
21. UchidaJ., TsudaT., YamamotoY., SetoH., AbeM., and ShibuyaA.: Electroplating of amorphous aluminum manganese alloy from molten-salts. ISIJ Int. 33(9), 10291036 (1993).
22. BoonJ.A., LeviskyJ.A., PflugJ.L., and WilkesJ.S.: Friedel crafts reactions in ambient-temperature molten-salts. J. Org. Chem. 51(4), 480483 (1986).
23. LiQ.F., HjulerH.A., BergR.W., and BjerrumN.J.: Electrochemical deposition and dissolution of aluminum in NaAlCl4 melts - Influence of MnCl2 and sulfide addition. J. Electrochem. Soc. 137(9), 27942798 (1990).
24. LiJ.C., NanS.H., and JiangQ.: Study of the electrodeposition of Al-Mn amorphous alloys from molten salts. Surf. Coat. Technol. 106(2–3), 135139 (1998).
25. GrushkoB. and StaffordG.R.: Phase formation in electrodeposited and thermally annealed Al-Mn alloys. Metall. Trans. A 21(11), 28692879 (1990).
26. TsudaT., HusseyC.L., and StaffordG.R.: Electrodeposition of Al-Mo-Mn ternary alloys from the Lewis acidic AlCl3-EtMeImCl molten salt. J. Electrochem. Soc. 152(9), C620C625 (2005).
27. GrushkoB. and StaffordG.R.: Structural study of electrodeposited aluminum-manganese alloys. Metall. Trans. A 20(8), 13511359 (1989).
28. LiQ.F., HjulerH.A., BergR.W., and BjerrumN.J.: Influence of substrates on the electrochemical deposition and dissolution of aluminum in NaAlCl4 melts. J. Electrochem. Soc. 138(3), 763766 (1991).
29. RuanS. and SchuhC.A.: Mesoscale structure and segregation in electrodeposited nanocrystalline alloys. Scr. Mater. 59(11), 12181221 (2008).
30. CarlsonW.D.: Competitive diffusion-controlled growth of porphyroblasts. Mineral. Mag. 55(380), 317330 (1991).
31. ScharifkerB. and HillsG.: Theoretical and experimental studies of multiple nucleation. Electrochim. Acta 28(7), 879889 (1983).
32. DentA.J., SeddonK.R., and WeltonT.: The structure of halogenometallate complexes dissolved in both basic and acidic room-temperature halogenoaluminate(III) ionic liquids, as determined by Exafs. J. Chem. Soc., Chem. Commun. (4), 315316 (1990).
33. KatoM., MoriT., and SchwartzL.H.: Hardening by spinodal modulated structure. Acta Metall. 28(3), 285290 (1980).
34. FindikF. and FlowerH.M.: Morphological-changes and hardness evolution in Cu-30Ni-5Cr and Cu-45Ni-15Cr spinodal alloys. Mater. Sci. Technol. 9(5), 408416 (1993).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 4
Total number of PDF views: 22 *
Loading metrics...

Abstract views

Total abstract views: 102 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd October 2017. This data will be updated every 24 hours.