Skip to main content
×
Home

Molten salt synthesis of color-tunable and single-component NaY(1−xy)(WO4)2:Eu3+ x ,Tb3+ y phosphor for UV LEDs

  • Fang Lei (a1), Li-Jing Huang (a1), Ying Shi (a1), Jian-Jun Xie (a1), Lei Zhang (a1) and WeiQin Xiao (a1)...
Abstract
Abstract

Tungstate based phosphors have efficient absorption in the UV region and can be used for UV-pumped light emitting. For novel and effective materials and synthesis methods in this system, a series of Eu3+ and Tb3+ co-doped NaY(WO4)2 phosphors have been synthesized via the molten salt method. The powder X-ray diffraction (PXRD) patterns, scanning electronic microscope (SEM), and photoluminescent spectra have been characterized for the prepared samples. The results show the flux (NaCl) not only decreases the reaction temperature (700–900 °C) than the normal solid state synthesis (∼1000 °C), but also controls the morphology of the products. The shape and size of products can be changed simply and effectively by the reaction conditions, such as temperature and heating time. It is also found that the emission colors of the samples can be tuned from red to green by simply adjusting the doping concentrations of Eu3+ and Tb3+ ions under the same wave length excitation, which has potential applications for multi-color display and illumination as a single-component phosphor.

Copyright
Corresponding author
a) Address all correspondence to this author. e-mail: leif@shu.edu.cn
Footnotes
Hide All
b)

These authors contributed equally to this work.

Contributing Editor: Winston V. Schoenfeld

Footnotes
References
Hide All
1. Guo Q., Liao L., and Xia Z.: Luminescence properties and energy transfer in La6Ba4(SiO4)6F2:Ce3+,Tb3+ phosphors. J. Lumin. 145, 65 (2014).
2. Xia Z. and Liu Q.: Progress in discovery and structural design of color conversion phosphors for LEDs. Prog. Mater. Sci. 84, 59 (2016).
3. Zhou J. and Xia Z.: Multi-color emission evolution and energy transfer behavior of La3GaGe5O16:Tb3+,Eu3+ phosphors. J. Mater. Chem. C 2(34), 6978 (2014).
4. Huang J., Hou B., Ling H., Liu J., and Yu X.: Crystal structure, electronic structure, and photoluminescence properties of La3BW1–x Mo x O9:Eu3+ red phosphor. Inorg. Chem. 53(18), 9541 (2014).
5. Kodaira C.A., Brito H.F., and Felinto M.: Luminescence investigation of Eu3+ ion in the RE2(WO4)(3) matrix (RE = La and Gd) produced using the Pechini method. J. Solid State Chem. 171(1–2), 401 (2003).
6. Wang W., Yang P., Cheng Z., Hou Z., Li C., and Lin J.: Patterning of red, green, and blue luminescent films based on CaWO4:Eu3+, CaWO4:Tb3+, and CaWO4 phosphors via microcontact printing route. ACS Appl. Mater. Interfaces 3(10), 3921 (2011).
7. Dai Q., Song H., Ren X., Lu S., Pan G., Bai X., Dong B., Qin R., Qu X., and Zhang H.: Structure and upconversion luminescence of hydrothermal PbWO4:Er3+,Yb3+ powders. J. Mater. Chem. C 112(49), 19694 (2008).
8. Lei F., Yan B., Chen H.H., and Zhao J.T.: Surfactant-assisted hydrothermal synthesis of Eu3+-doped white light hydroxyl sodium yttrium tungstate microspheres and their conversion to NaY(WO4)2 . Inorg. Chem. 48(16), 7576 (2009).
9. Jia G., Wang C., and Xu S.: Local site symmetry determination of Scheelite-type structures by Eu3+ spectroscopy. J. Mater. Chem. C 114(41), 17905 (2010).
10. Wang D., Yang P., Cheng Z., Wang W., Hou Z., Dai Y., Li C., and Lin J.: Patterning of Gd2(WO4)3:Ln3+(Ln = Eu, Tb) luminescent films by microcontact printing route. J. Colloid Interface Sci. 365(1), 320 (2012).
11. Huang C-H., Chen T-M., Liu W-R., Chiu Y-C., Yeh Y-T., and Jang S-M.: A single-phased emission-tunable phosphor Ca9Y(PO4)7:Eu2+,Mn2+ with efficient energy transfer for white-light-emitting diodes. ACS Appl. Mater. Interfaces 2(1), 259 (2010).
12. Jiang L., Pang R., Li D., Sun W., Jia Y., Li H., Fu J., Li C., and Zhang S.: Tri-chromatic white-light emission from a single-phase Ca9Sc(PO4)7:Eu2+,Tb3+,Mn2+ phosphor for LED applications. Dalton Trans. 44(39), 17241 (2015).
13. Lv W., Jiao M., Zhao Q., Shao B., W., and You H.: Ba1.3Ca0.7SiO4:Eu2+,Mn2+: A promising single-phase, color-tunable phosphor for near-ultraviolet white-light-emitting diodes. Inorg. Chem. 53(20), 11007 (2014).
14. Schmiechen S., Schneider H., Wagatha P., Hecht C., Schmidt P.J., and Schnick W.: Toward new phosphors for application in illumination-grade white pc-LEDs: The nitridomagnesosilicates Ca[Mg3SiN4]:Ce3+, Sr[Mg3SiN4]:Eu2+, and Eu[Mg3SiN4]. Chem. Mater. 26(8), 2712 (2014).
15. W., Guo N., Jia Y., Zhao Q., Lv W., Jiao M., Shao B., and You H.: Tunable color of Ce3+/Tb3+/Mn2+-coactivated CaScAlSiO6 via energy transfer: A single-component red/white-emitting phosphor. Inorg. Chem. 52(6), 3007 (2013).
16. Lei F. and Yan B.: Morphology-controlled synthesis, physical characterization, and photoluminescence of novel self-assembled Pomponlike white light phosphor: Eu3+-doped sodium gadolinium tungstate. J. Phys. Chem. C 113(3), 1074 (2009).
17. Lei F., Yan B., Chen H.H., and Zhao J.T.: Surfactant-assisted hydrothermal synthesis of Eu(3+)-doped white light hydroxyl sodium yttrium tungstate microspheres and their conversion to NaY(WO4)2 . Inorg. Chem. 48(16), 7576 (2009).
18. Cheng F., Xia Z., Molokeev M.S., and Jing X.: Effects of composition modulation on the luminescence properties of Eu3+ doped Li1−x Ag x Lu(MoO4)2 solid-solution phosphors. Dalton Trans. 44(41), 18078 (2015).
19. Durairajan A., Thangaraju D., Valente M., and Babu S.M.: Structural, morphological, vibrational, and photoluminescence study of sol–gel-synthesized Tm3+:NaGd(WO4)2 blue phosphors. J. Electron. Mater. 44(11), 4199 (2015).
20. Xiong F.B., Lin H.F., Wang L.J., Meng X.G., and Zhu W.Z.: White light emission in host-sensitized Dy3+-single-doped NaIn(WO4)2 phosphors. Phys. B 459, 41 (2015).
21. Yang X., Fu Z., Liu G., Zhang C., Wei Y., Wu Z., and Sheng T.: Controlled morphology and EDTA-induced pure green upconversion luminescence of Er3+/Ho3+–Yb3+ co-doped NaCe(MoO4)2 phosphor. RSC Adv. 5(86), 70220 (2015).
22. Durairajan A., Balaji D., Rasu K.K., Babu S.M., Hayakawa Y., and Valente M.A.: Sol–gel synthesis and photoluminescence studies on colour tuneable Dy3+/Tm3+ co-doped NaGd(WO4)2 phosphor for white light emission. J. Lumin. 157, 357 (2015).
23. Jia P., Liu X., Luo Y., Yu M., and Lin J.: Sol-gel synthesis and characterization of SiO2@NaGd(WO4)(2):Eu3+ core–shell-structured spherical phosphor particles. J. Electrochem. Soc. 154(1), J39 (2007).
24. Feng H., Yang Y., Cao H., Guan J., and Xu Y.: Hydrothermal synthesis and luminescence of NaGd(WO4)(2):RE3+ (RE = Eu, Tb, Tm) phosphors. J. Mater. Sci.: Mater. Electron. 26(5), 3129 (2015).
25. Xu H., Xu K., Lu A., Wang X., and Hu J.: Microwave hydrothermal synthesis and white up-conversion emission of NaGd(WO4)2:(Yb3+/Tm3+/Ho3+) phosphors. J. Mater. Sci.: Mater. Electron. 26(6), 3921 (2015).
26. Chen Y., Yang H.K., Chung J.W., Moon B.K., Choi H., Jeong J.H., and Kim J.H.: Luminescence properties and crystallinity of Sm3+-doped NaGd(WO4)2 powder phosphors. J. Korean Phys. Soc. 57(6), 1760 (2010).
27. Xiaochun Z. and Xiaojun W.: Comparison of the effects of cationic and nonionic surfactants on the properties of Y2O3:Eu3+ phosphors synthesized by a co-precipitation-molten salt method. Optik 126(24), 4800 (2015).
28. Yamakata A., Yeilin H., Kawaguchi M., Hisatomi T., Kubota J., Sakata Y., and Domen K.: Morphology-sensitive trapping states of photogenerated charge carriers on SrTiO3 particles studied by time-resolved visible to Mid-IR absorption spectroscopy: The effects of molten salt flux treatments. J. Photochem. Photobiol., A 313, 168 (2015).
29. Yu Z., Wang X., Song X., Liu Y., and Qiu J.: Molten salt synthesis of nitrogen-doped porous carbons for hydrogen sulfide adsorptive removal. Carbon 95, 852 (2015).
30. Zhao H., Liu R., Guo Y., and Yang S.: Molten salt medium synthesis of wormlike platinum silver nanotubes without any organic surfactant or solvent for methanol and formic acid oxidation. Phys. Chem. Chem. Phys. 17(46), 31170 (2015).
31. Fujii T., Kodaira K., Kawauchi O., Tanaka N., Yamashita H., and Anpo M.: Photochromic behavior in the fluorescence spectra of 9-anthrol encapsulated in Si–Al glasses prepared by the sol−gel method. J. Phys. Chem. B 101(50), 10631 (1997).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 6
Total number of PDF views: 45 *
Loading metrics...

Abstract views

Total abstract views: 233 *
Loading metrics...

* Views captured on Cambridge Core between 16th February 2017 - 23rd November 2017. This data will be updated every 24 hours.